@inproceedings{KhaledReichlingBruhnsetal., author = {Khaled, W. and Reichling, S. and Bruhns, Otto T. and Ermert, Helmut and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Baumann, Michael and B{\"o}se, Holger and Freimuth, Herbert and Tunayar, A.}, title = {Palpation imaging using a haptic sensor actuator system for medical applications}, series = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, booktitle = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, publisher = {HVG Hanseatische Veranstaltungs-GmbH}, address = {Bremen}, pages = {379 -- 382}, language = {en} } @inproceedings{TunayarKleinFreimuthetal., author = {Tunayar, A. and Klein, Dagmar and Freimuth, Herbert and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Ermert, Helmut and Khaled, W.}, title = {A tactile array based on electrorheological fluids}, series = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, booktitle = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, publisher = {HVG Hanseatische Veranstaltungs-GmbH}, address = {Bremen}, pages = {601 -- 604}, language = {en} } @inproceedings{KhaledBruhnsReichlingetal., author = {Khaled, W. and Bruhns, Otto T. and Reichling, S. and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and Klein, Dagmar and Freimuth, Herbert and Ermert, Helmut}, title = {A haptic system for virtual reality applications based on ultrasound elastography and electrorheological fluids}, series = {Acoustical Imaging (ACIM)}, volume = {27}, booktitle = {Acoustical Imaging (ACIM)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-90-481-6652-7}, issn = {0270-5117}, doi = {10.1007/978-1-4020-2402-3_85}, pages = {667 -- 674}, abstract = {Mechanical properties of biological tissue represent important diagnostic information and are of histological and pathological relevance. Malignant tumors are significantly stiffer and more immobile than surrounding healthy tissue. Hard calcifications in vessels occur due to arteriosclerosis. The problem is, that such information is usually not available or can only be obtained by manual palpation, which is subjective and limited in sensitivity. It requires intuitive assessment and does not allow quantitative documentation. Unfortunately, none of the established medical imaging equipment such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT) can provide direct measure of tissue elasticity. On the one hand a suitable sensor is required for quantitative measurement of mechanical tissue properties. On the other hand there is also some need for a realistic haptic display of such tissue properties. Suitable actuator arrays with high spatial resolution acting in real time are required. A haptic sensor actuator system is presented in this paper including a sensitive sensor part and an actuator array for different applications. The mechanical consistency of an object is to be locally specified using a sensor system and represented perceptibly in a remote position on an actuator system for the user. The sensor system uses ultrasound (US) elastography, whereas the actuator array is based on electrorheological (ER) fluids.}, language = {en} } @inproceedings{KhaledReichlingBruhnsetal., author = {Khaled, W. and Reichling, S. and Bruhns, Otto T. and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Baumann, Michael and B{\"o}se, Holger and Klein, Dagmar and Freimuth, Herbert and Tunayar, A. and Lorenz, A. and Pessavento, A. and Ermert, Helmut}, title = {Palpation imaging using a haptic system for virtual reality applications in medicine}, series = {Perspective in image-guided surgery : proceedings of the Scientific Workshop on Medical Robotics, Navigation, and Visualization : RheinAhrCampus Remagen, Germany, 11-12 March}, booktitle = {Perspective in image-guided surgery : proceedings of the Scientific Workshop on Medical Robotics, Navigation, and Visualization : RheinAhrCampus Remagen, Germany, 11-12 March}, publisher = {World Scientific Publ.}, address = {Singapore}, pages = {407 -- 414}, language = {en} } @inproceedings{KhaledReichlingBruhnsetal., author = {Khaled, W. and Reichling, S. and Bruhns, Otto T. and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Baumann, Michael and B{\"o}se, Holger and Klein, Dagmar and Freimuth, Herbert and Tunayar, A. and Lorenz, A. and Pessavento, A. and Ermert, Helmut}, title = {Palpation Imaging using a Haptic System for Virtual Reality Applications in Medicine}, series = {Proceedings of the 12th Annual Medicine Meets Virtual Reality Conference: - Building a Better You: The Next Tools for Medical Education, Diagnosis, and Care. - Medicine Meets Virtual Reality (MMVR) - Newport Beach (California, USA). 2004}, booktitle = {Proceedings of the 12th Annual Medicine Meets Virtual Reality Conference: - Building a Better You: The Next Tools for Medical Education, Diagnosis, and Care. - Medicine Meets Virtual Reality (MMVR) - Newport Beach (California, USA). 2004}, language = {en} } @article{BoeseBaumannMonkmanetal., author = {B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Tunayar, A. and Freimuth, Herbert and Ermert, Helmut and Khaled, W.}, title = {A new ER fluid based haptic actuator system for virtual reality}, series = {International journal of modern physics / B Condensed matter physics, statistical physics}, volume = {19}, journal = {International journal of modern physics / B Condensed matter physics, statistical physics}, number = {7-9}, publisher = {World Scientific Publ.}, doi = {10.1142/9789812702197_0129 [Titel anhand dieser DOI in Citavi-Projekt {\"u}bernehmen]}, pages = {1628 -- 1634}, abstract = {The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.}, language = {en} } @article{MonkmanEgersdoerferMeieretal., author = {Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and B{\"o}se, Holger and Baumann, Michael and Ermert, Helmut and Kahled, W. and Freimuth, Herbert}, title = {Technologies for Haptic Displays in Teleoperation}, series = {Industrial Robot}, volume = {30}, journal = {Industrial Robot}, number = {6}, publisher = {Emerald}, issn = {0143-991x}, doi = {10.1108/01439910310506792}, pages = {525 -- 530}, abstract = {Since the 1960s many alphanumeric to tactile data conversion methods have been investigated, mainly with the ultimate aim of assisting the blind. More recently, interest has been directed toward the display of pictures on haptically explorable surfaces - tactile imaging - for a range of medical, remote sensing and entertainment purposes. This paper examines the technologies which have been utilised for haptically explorable tactile displays over the past three decades, focussing on those which appear commercially viable in the immediate future.}, language = {en} } @article{KleinRensinkFreimuthetal., author = {Klein, Dagmar and Rensink, D. and Freimuth, Herbert and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and B{\"o}se, Holger and Baumann, Michael}, title = {Modelling the Response of a Tactile Array using an Electrorheological Fluids}, series = {Journal of Physics D: Applied Physics}, volume = {37}, journal = {Journal of Physics D: Applied Physics}, number = {5}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1361-6463}, doi = {10.1088/0022-3727/37/5/023}, pages = {794 -- 803}, abstract = {This paper reports the first step in the development of a tactile array suitable for the presentation of haptic information in virtual reality. The system is based on the electric field dependence of the viscosity of electrorheological fluids. The simulation, as well as the experimental realization of single tactels is described. The mathematical approach is based on the Eckart model (Eckart W 2000 Continuum Mech. Thermodyn. 12 341-62) and its validity is demonstrated by comparing the resulting yield stress with the experimental results from Wunderlich (2000 Dissertation Universit{\"a}t Erlangen-N{\"u}rnberg). Two different tactel designs are realized and the experimental results are compared with numerical simulation. The design of modification B is shown to be applicable for the realization of an actuator array with high spatial resolution.}, language = {en} } @inproceedings{BoeseErmertTunayaretal., author = {B{\"o}se, Holger and Ermert, Helmut and Tunayar, A. and Monkman, Gareth J. and Baumann, Michael and Kahled, W. and Reichling, S. and Bruhns, Otto T. and Freimuth, Herbert and Egersd{\"o}rfer, Stefan}, title = {A Novel Haptic Sensor-Actuator System for Applications in Virtual Reality}, series = {BMBF-Tagung, Leipzig 19.10 February 2004}, booktitle = {BMBF-Tagung, Leipzig 19.10 February 2004}, language = {en} } @article{KleinFreimuthMonkmanetal., author = {Klein, Dagmar and Freimuth, Herbert and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and B{\"o}se, Holger and Baumann, Michael and Ermert, Helmut and Bruhns, Otto T.}, title = {Electrorheological Tactile Elements}, series = {Mechatronics}, volume = {15}, journal = {Mechatronics}, number = {7}, publisher = {Pergamon}, address = {Oxford}, doi = {10.1016/j.mechatronics.2004.05.007}, pages = {883 -- 897}, abstract = {The use of ultrasound systems for medical examination and diagnosis is nothing new. The extension of ultrasound techniques for real time elastographic analysis purposes represents a more recent development. Nevertheless, as they stand all such techniques rely on the interpretation of two-dimensional visual data displayed on a video screen. In reality however, a medical doctor will make as much use of exploratory touch as he or she does vision, making the simultaneous portrayal of both video and tactile information most desirable [B{\"o}se H, Monkman GJ, Freimuth H, Ermert H. Haptisches Sensor-Aktor-System uaf der grundlage der Echtzeitelastographie sowie von elktro- und magnetorheologischen Materialien "HASASEM" [3]. BMBF Antrag 01 IR A14D, Oktober 2000]. This paper discusses the preliminary tests and basic design parameters for single tactels using electrorheological fluids. The final aim is to produce a prototype three-dimensional tactile display comprising electrically switchable micro-machined cells whose mechanical moduli are governed by phase changes experienced by electrorheological fluids. This will be integrated with the latest elastographic ultrasonic sensor systems in order to present the human fingers with controllable surfaces capable of emulating biological tissue, muscle and bone.}, language = {en} }