@article{SchaefferHerrmannSchratzenstalleretal., author = {Schaeffer, Leon and Herrmann, David and Schratzenstaller, Thomas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Theoretical considerations on stiffness characteristics of a 3-dimensional tensegrity joint model for the use in dynamic hand orthoses}, series = {Journal of Medical Robotics Research}, journal = {Journal of Medical Robotics Research}, publisher = {World Scientific}, doi = {10.1142/S2424905X25400069}, language = {en} } @inproceedings{HerrmannKunzeKobesetal., author = {Herrmann, David and Kunze, Julian and Kobes, Julian and Seelecke, Stefan and Motzki, Paul and Rizzello, Gianluca and B{\"o}hm, Valter}, title = {A mobile tensegrity robot driven by rolled dielectric elastomer actuators}, series = {2025 IEEE 8th International Conference on Soft Robotics (RoboSoft), 22-26.April 2025, Lausanne}, booktitle = {2025 IEEE 8th International Conference on Soft Robotics (RoboSoft), 22-26.April 2025, Lausanne}, publisher = {IEEE}, doi = {10.1109/RoboSoft63089.2025.11020974}, pages = {6}, abstract = {This paper presents a tensegrity-based mobile robot powered by dielectric elastomer actuators (DEAs), which provide high compliance and adaptability. The design consists of two V-shaped members linked by DEAs, enabling both symmetrical and asymmetrical actuation for varied movement patterns. Modal analysis and simulations show that uniform DEA actuation supports efficient linear motion, while asymmetrical actuation enables controlled circular paths. Experimental testing highlights the influence of voltage waveforms, frequencies, and surface types on speed, with optimal performance achieved using rectangular waveforms on low-friction surfaces. The robot reaches a top speed of 188 mm/s, among the highest reported for DEA-driven robots.}, language = {en} } @inproceedings{SchaefferSchmausserHerrmannetal., author = {Schaeffer, Leon and Schmaußer, Theresa and Herrmann, David and Lehmann, Lukas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Multi-Body Simulation of a Dynamic Hand Orthosis based on a Prestressed Compliant Structure Incorporating the Human Hand}, series = {2025 International Symposium on Medical Robotics (ISMR), May 14-16, 2025, Atlanta, GA, USA,}, booktitle = {2025 International Symposium on Medical Robotics (ISMR), May 14-16, 2025, Atlanta, GA, USA,}, publisher = {IEEE}, doi = {10.1109/ISMR67322.2025.11025982}, pages = {80 -- 86}, abstract = {Many dynamic hand orthoses use one degree of freedom joints, such as hinge joints. Therefore, these orthoses can only partially replicate the complex, multi-axis movement of the hand. A possible solution for this is the use of prestressed compliant structures as the basis for orthoses. Determining the joint forces in the wrist and optimizing the dynamic orthosis to influence these forces as well as acting muscle forces are important steps in the development of these orthoses. For this reason, in this work multi-body simulation models of an orthosis with human hand models are presented. Based on these theoretical investigations, more detailed orthosis models as well as initial prototypes of prestressed compliant dynamic hand orthoses can be developed.}, language = {en} }