@article{ScheppachRauberStallhoferetal., author = {Scheppach, Markus W. and Rauber, David and Stallhofer, Johannes and Muzalyova, Anna and Otten, Vera and Manzeneder, Carolin and Schwamberger, Tanja and Wanzl, Julia and Schlottmann, Jakob and Tadic, Vidan and Probst, Andreas and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Fleischmann, Carola and Meinikheim, Michael and Miller, Silvia and M{\"a}rkl, Bruno and Stallmach, Andreas and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm}, series = {Gastrointestinal Endoscopy}, journal = {Gastrointestinal Endoscopy}, publisher = {Elsevier}, doi = {10.1016/j.gie.2023.01.006}, abstract = {Background and aims Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance. Methods A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm's result during the test. From their consultation distribution, a stratification of test images into "easy" and "difficult" was performed and used for classified performance measurement. Results External validation of the AI algorithm yielded values of 90 \%, 76 \%, and 84 \% for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 \%, 72 \% and 67 \%, while the corresponding values in experts were 72 \%, 69 \% and 71 \%, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for "difficult" images, the performance of the AI algorithm was stable. Conclusion In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on "difficult" images suggests a further positive add-on effect in challenging cases.}, language = {en} } @misc{ScheppachRauberStallhoferetal., author = {Scheppach, Markus and Rauber, David and Stallhofer, Johannes and Muzalyova, Anna and Otten, Vera and Manzeneder, Carolin and Schwamberger, Tanja and Wanzl, Julia and Schlottmann, Jakob and Tadic, Vidan and Probst, Andreas and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Fleischmann, Carola and Meinikheim, Michael and Miller, Silvia and M{\"a}rkl, Bruno and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA)}, series = {Endoscopy}, volume = {55}, journal = {Endoscopy}, number = {S02}, publisher = {Thieme}, doi = {10.1055/s-0043-1765421}, pages = {S165}, abstract = {Aims VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images. Methods 858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into "easy" and "difficult". Results Internal validation showed 82\%, 85\% and 84\% for sensitivity, specificity and accuracy. External validation showed 90\%, 76\% and 84\%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for "difficult" images, AI performance remained stable. Conclusions The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in "easy" and "difficult" test images may indicate an advantage in macroscopically challenging cases.}, language = {en} } @article{MeinikheimMendelPalmetal.2024, author = {Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus Wolfgang and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik Andreas Helmut Otto and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and R{\"u}ckert, Tobias and Matsumura, Tomoaki and Fern{\´a}ndez-Esparrach, Gl{\`o}ria and Parsa, Nasim and Byrne, Michael F and Messmann, Helmut and Ebigbo, Alanna}, title = {Effect of AI on performance of endoscopists to detect Barrett neoplasia: A Randomized Tandem Trial}, series = {Endoscopy}, journal = {Endoscopy}, publisher = {Georg Thieme Verlag}, issn = {0013-726X}, doi = {10.1055/a-2296-5696}, year = {2024}, abstract = {Background and study aims To evaluate the effect of an AI-based clinical decision support system (AI) on the performance and diagnostic confidence of endoscopists during the assessment of Barrett's esophagus (BE). Patients and Methods Ninety-six standardized endoscopy videos were assessed by 22 endoscopists from 12 different centers with varying degrees of BE experience. The assessment was randomized into two video sets: Group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a standalone sensitivity, specificity, and accuracy of 92.2\%, 68.9\%, and 81.6\%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3\%, 58.1 and 71.5\%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.7\% (95\% CI, 65.2\% - 74.2\%) to 78.0\% (95\% CI, 74.0\% - 82.0\%); specificity 67.3\% (95\% CI, 62.5\% - 72.2\%) to 72.7\% (95 CI, 68.2\% - 77.3\%). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from the additional AI. BE experts and nonexperts remained below the standalone performance of AI, suggesting that there may be other factors influencing endoscopists to follow or discard AI advice.}, language = {en} } @article{MeinikheimMendelPalmetal., author = {Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik A. H. and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and Rueckert, Tobias and Matsumura, Tomoaki and Fern{\´a}ndez-Esparrach, Gl{\`o}ria and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial}, series = {Endoscopy}, journal = {Endoscopy}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-2296-5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-72818}, pages = {9}, abstract = {Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2\%, 68.9\%, and 81.3\%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3\%, 58.1\%, and 71.5\%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8\% [95\%CI 65.2\%-74.2\%] to 78.0\% [95\%CI 74.0\%-82.0\%]; specificity 67.3\% [95\%CI 62.5\%-72.2\%] to 72.7\% [95\%CI 68.2\%-77.3\%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.}, language = {en} }