@misc{WeberDendorferSuessetal., author = {Weber, Karsten and Dendorfer, Sebastian and S{\"u}ß, Franz and Kubowitsch, Simone and Schratzenstaller, Thomas and Haug, Sonja and Mohr, Christa and Kiesl, Hans and Drechsler, J{\"o}rg and Westner, Markus and Kobus, J{\"o}rn and Schubert, Martin J. W. and Zenger, Stefan and Pietsch, Alexander and Weiß, Josef and Hinterseer, Sebastian and Schieck, Roland and Scherzinger, Stefanie and Klettke, Meike and Ringlstetter, Andreas and St{\"o}rl, Uta and Bissyand{\´e}, Tegawend{\´e} F. and Seeburger, Achim and Schindler, Timo and Ramsauer, Ralf and Kiszka, Jan and K{\"o}lbl, Andreas and Lohmann, Daniel and Mauerer, Wolfgang and Maier, Johannes and Scorna, Ulrike and Palm, Christoph and Soska, Alexander and Mottok, J{\"u}rgen and Ellermeier, Andreas and V{\"o}gele, Daniel and Hierl, Stefan and Briem, Ulrich and Buschmann, Knut and Ehrlich, Ingo and Pongratz, Christian and Pielmeier, Benjamin and Tyroller, Quirin and Monkman, Gareth J. and Gut, Franz and Roth, Carina and Hausler, Peter and Bierl, Rudolf and Prommesberger, Christian and Ławrowski, Robert Damian and Langer, Christoph and Schreiner, Rupert and Huang, Yifeng and She, Juncong and Ottl, Andreas and Rieger, Walter and Kraml, Agnes and Poxleitner, Thomas and Hofer, Simon and Heisterkamp, Benjamin and Lerch, Maximilian and Sammer, Nike and Golde, Olivia and Wellnitz, Felix and Schmid, Sandra and Muntschick, Claudia and Kusterle, Wolfgang and Paric, Ivan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Schmidt, Ottfried and Schwanzer, Peter and Rabl, Hans-Peter and Sterner, Michael and Bauer, Franz and Steinmann, Sven and Eckert, Fabian and Hofrichter, Andreas}, title = {Forschungsbericht 2017}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-3-5}, doi = {10.35096/othr/pub-1383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13835}, subject = {Forschung}, language = {de} } @article{MaierDesernoHandelsetal., author = {Maier, Andreas and Deserno, Thomas M. and Handels, Heinz and Maier-Hein, Klaus H. and Palm, Christoph and Tolxdorff, Thomas}, title = {IJCARS: BVM 2021 special issue}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {16}, journal = {International Journal of Computer Assisted Radiology and Surgery}, publisher = {Springer}, doi = {10.1007/s11548-021-02534-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-21666}, pages = {2067 -- 2068}, abstract = {The German workshop on medical image computing (BVM) has been held in different locations in Germany for more than 20 years. In terms of content, BVM focused on the computer-aided analysis of medical image data with a wide range of applications, e.g. in the area of imaging, diagnostics, operation planning, computer-aided intervention and visualization. During this time, there have been remarkable methodological developments and upheavals, on which the BVM community has worked intensively. The area of machine learning should be emphasized, which has led to significant improvements, especially for tasks of classification and segmentation, but increasingly also in image formation and registration. As a result, work in connection with deep learning now dominates the BVM. These developments have also contributed to the establishment of medical image processing at the interface between computer science and medicine as one of the key technologies for the digitization of the health system. In addition to the presentation of current research results, a central aspect of the BVM is primarily the promotion of young scientists from the diverse BVM community, covering not only Germany but also Austria, Switzerland, The Netherland and other European neighbors. The conference serves primarily doctoral students and postdocs, but also students with excellent bachelor and master theses as a platform to present their work, to enter into professional discourse with the community, and to establish networks with specialist colleagues. Despite the many conferences and congresses that are also relevant for medical image processing, the BVM has therefore lost none of its importance and attractiveness and has retained its permanent place in the annual conference rhythm. Building on this foundation, there are some innovations and changes this year. The BVM 2021 was organized for the first time at the Ostbayerische Technische Hochschule Regensburg (OTH Regensburg, a technical university of applied sciences). After Aachen, Berlin, Erlangen, Freiburg, Hamburg, Heidelberg, Leipzig, L{\"u}beck, and Munich, Regensburg is not just a new venue. OTH Regensburg is the first representative of the universities of applied sciences (HAW) to organize the conference, which differs to universities, university hospitals, or research centers like Fraunhofer or Helmholtz. This also considers the further development of the research landscape in Germany, where HAWs increasingly contribute to applied research in addition to their focus on teaching. This development is also reflected in the contributions submitted to the BVM in recent years. At BVM 2021, which was held in a virtual format for the first time due to the Corona pandemic, an attractive and high-quality program was offered. Fortunately, the number of submissions increased significantly. Out of 97 submissions, 26 presentations, 51 posters and 5 software demonstrations were accepted via an anonymized reviewing process with three reviews each. The three best works have been awarded BVM prizes, selected by a separate committee. Based on these high-quality submissions, we are able to present another special issue in the International Journal of Computer Assisted Radiology and Surgery (IJCARS). Out of the 97 submissions, the ones with the highest scores have been invited to submit an extended version of their paper to be presented in IJCARS. As a result, we are now able to present this special issue with seven excellent articles. Many submissions focus on machine learning in a medical context.}, subject = {Bildgebendes Verfahren}, language = {en} } @article{MaierDesernoHandelsetal., author = {Maier, Andreas and Deserno, Thomas M. and Handels, Heinz and Maier-Hein, Klaus H. and Palm, Christoph and Tolxdorff, Thomas}, title = {Guest editorial of the IJCARS - BVM 2018 special issue}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {14}, journal = {International Journal of Computer Assisted Radiology and Surgery}, publisher = {Springer}, doi = {10.1007/s11548-018-01902-0}, pages = {1 -- 2}, language = {en} } @misc{MauererRexhepajMonkmanetal., author = {Mauerer, Wolfgang and Rexhepaj, Tanja and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Neidhart, Thomas and Wolfrum, Dominik and Sterner, Michael and Heberl, Michael and Nusko, Robert and Maier, Georg and Nagl, Klaus and Reuter, Monika and Hofrichter, Andreas and Lex, Thomas and Lesch, Florian and Kieninger, B{\"a}rbel and Szalo, Alexander Eduard and Zehner, Alexander and Palm, Christoph and Joblin, Mitchell and Apel, Sven and Ramsauer, Ralf and Lohmann, Daniel and Westner, Markus and Strasser, Artur and Munndi, Maximilian and Ebner, Lena and Elsner, Michael and Weiß, Nils and Segerer, Matthias and Hackenberg, Rudolf and Steger, Sebastian and Schmailzl, Anton and Dostalek, Michael and Armbruster, Dominik and Koch, Fabian and Hierl, Stefan and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Briem, Ulrich and Diermeier, Andreas and Spreitzer, Stefan and Beiderbeck, Sabrina and Hook, Christian and Zobel, Martin and Weber, Tim and Groß, Simon and Penzkofer, Rainer and Dendorfer, Sebastian and Schillitz, Ingo and Bauer, Thomas and Rudolph, Clarissa and Schmidt, Katja and Liebetruth, Thomas and Hamer, Markus and Haug, Sonja and Vernim, Matthias and Weber, Karsten and Saßmannshausen, Sean Patrick and Books, Sebastian and Neuleitner, Nikolaus and Rechenauer, Christian and Steffens, Oliver and Kusterle, Wolfgang and G{\"o}mmel, Roland and Wellnitz, Felix and Stierstorfer, Johannes and Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail and Bleicher, Veronika and Fischer, Sebastian and Hackenberg, Rudolf and Horn, Anton and Kawasch, Raphael and Petzenhauser, Michael and Probst, Tobias and Udalzow, Anton and Dams, Florian and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian}, title = {Forschungsbericht 2016}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-1384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13840}, language = {de} } @article{FuersattelPlankMaieretal., author = {Fuersattel, Peter and Plank, Claus and Maier, Andreas and Riess, Christian}, title = {Accurate laser scanner to camera calibration with application to range sensor evaluation}, series = {IPSJ Transactions on Computer Vision and Applications}, volume = {9}, journal = {IPSJ Transactions on Computer Vision and Applications}, number = {1}, publisher = {Springer Nature}, doi = {10.1186/s41074-017-0032-5}, abstract = {Multi-modal sensory data plays an important role in many computer vision and robotics tasks. One popular multi-modal pair is cameras and laser scanners. To overlay and jointly use the data from both modalities, it is necessary to calibrate the sensors, i.e., to obtain the spatial relation between the sensors. Computing such a calibration is challenging as both sensors provide quite different data: cameras yield color or brightness information, laser scanners yield 3-D points. However, several laser scanners additionally provide reflectances, which turn out to make calibration to a camera well feasible. To this end, we first estimate a rough alignment of the coordinate systems of both modalities. Then, we use the laser scanner reflectances to compute a virtual image of the scene. Stereo calibration on the virtual image and the camera image are then used to compute a refined, high-accuracy calibration. It is encouraging that the accuracies in our experiments are comparable to camera-camera stereo setups and outperform another of other target-based calibration approach. This shows that the proposed algorithm reliably integrates the point cloud with the intensity image. As an example application, we use the calibration results to obtain ground-truth distance images for range cameras. Furthermore, we utilize this data to investigate the accuracy of the Microsoft Kinect V2 time-of-flight and the Intel RealSense R200 structured light camera.}, language = {en} } @article{MaierSchlattlGuessetal., author = {Maier, Robert and Schlattl, Andreas and Guess, Thomas and Mottok, J{\"u}rgen}, title = {CausalOps - Towards an industrial lifecycle for causal probabilistic graphical models}, series = {Information and Software Technology}, journal = {Information and Software Technology}, publisher = {Elsevier}, issn = {0950-5849}, doi = {10.1016/j.infsof.2024.107520}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-73350}, abstract = {Context: Causal probabilistic graph-based models have gained widespread utility, enabling the modeling of cause-and-effect relationships across diverse domains. With their rising adoption in new areas, such as safety analysis of complex systems, software engineering, and machine learning, the need for an integrated lifecycle framework akin to DevOps and MLOps has emerged. Currently, such a reference for organizations interested in employing causal engineering is missing. This lack of guidance hinders the incorporation and maturation of causal methods in the context of real-life applications. Objective: This work contextualizes causal model usage across different stages and stakeholders and outlines a holistic view of creating and maintaining them within the process landscape of an organization. Method: A novel lifecycle framework for causal model development and application called CausalOps is proposed. By defining key entities, dependencies, and intermediate artifacts generated during causal engineering, a consistent vocabulary and workflow model to guide organizations in adopting causal methods are established. Results: Based on the early adoption of the discussed methodology to a real-life problem within the automotive domain, an experience report underlining the practicability and challenges of the proposed approach is discussed. Conclusion: It is concluded that besides current technical advancements in various aspects of causal engineering, an overarching lifecycle framework that integrates these methods into organizational practices is missing. Although diverse skills from adjacent disciplines are widely available, guidance on how to transfer these assets into causality-driven practices still need to be addressed in the published literature. CausalOps' aim is to set a baseline for the adoption of causal methods in practical applications within interested organizations and the causality community.}, language = {en} }