@book{LauSchliermann, author = {Lau, Andreas and Schliermann, Rainer}, title = {Mentaltraining im Basketball und Rollstuhlbasketball}, publisher = {Czwalina}, address = {Hamburg}, isbn = {978-3-88020-589-5}, pages = {174}, subject = {Basketball}, language = {de} } @article{ScheppachMendelMuzalyovaetal., author = {Scheppach, Markus W. and Mendel, Robert and Muzalyova, Anna and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Yip, Hon Chi and Lau, Louis Ho Shing and G{\"o}lder, Stefan Karl and Schmidt, Arthur and Kouladouros, Konstantinos and Abdelhafez, Mohamed and Walter, Benjamin M. and Meinikheim, Michael and Chiu, Philip Wai Yan and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial intelligence improves submucosal vessel detection during third space endoscopy}, series = {Endoscopy}, journal = {Endoscopy}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/a-2534-1164}, abstract = {Background and study aims: While artificial intelligence (AI) shows high potential in decision support for diagnostic gastrointestinal endoscopy, its role in therapeutic endoscopy remains unclear. Third space endoscopic procedures pose the risk of intraprocedural bleeding. Therefore, we aimed to develop an AI algorithm for intraprocedural blood vessel detection. Patients and Methods: Using a test dataset with 101 standardized video clips containing 200 predefined submucosal blood vessels, 19 endoscopists were evaluated for the vessel detection rate (VDR) and time (VDT) with and without support of an AI algorithm. Test subjects were grouped according to experience in ESD. Results: With AI support, endoscopists VDR increased from 56.4\% [CI 54.1-58.6] to 72.4\% [CI 70.3-74.4]. Endoscopists' VDT dropped from 6.7sec [CI 6.2-7.1] to 5.2sec [CI 4.8-5.7]. False positive (FP) readings appeared in 4.5\% of frames and were marked significantly shorter than true positives (6.0sec [CI 5.28-6.70] vs. 0.7sec [CI 0.55-0.87]). Conclusions: AI improved the vessel detection rate and time of endoscopists during third space endoscopy. While these data need to be corroborated by clinical trials, AI may prove to be an invaluable tool for the improvement of endoscopic interventions.}, language = {en} } @misc{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Nagl, Sandra and Meinikheim, Michael and Yip, Hon Chi and Lau, Louis Ho Shing and Chiu, Philip Wai Yan and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Effekt eines K{\"u}nstliche Intelligenz (KI) - Algorithmus auf die Gef{\"a}ßdetektion bei third space Endoskopien}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {61}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {08}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0043-1771980}, pages = {e528-e529}, abstract = {Einleitung Third space Endoskopieprozeduren wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und gehen mit untersucherabh{\"a}ngigen Komplikationen wie Blutungen und Perforationen einher. Grund hierf{\"u}r ist die unabsichtliche Durchschneidung von submukosalen Blutgef{\"a}ßen ohne pr{\"a}emptive Koagulation. Ziele Die Forschungsfrage, ob ein KI-Algorithmus die intraprozedurale Gef{\"a}ßerkennung bei ESD und POEM unterst{\"u}tzen und damit Komplikationen wie Blutungen verhindern k{\"o}nnte, erscheint in Anbetracht des erfolgreichen Einsatzes von KI bei der Erkennung von Kolonpolypen interessant. Methoden Auf 5470 Einzelbildern von 59 third space Endoscopievideos wurden submukosale Blutgef{\"a}ße annotiert. Zusammen mit weiteren 179.681 nicht-annotierten Bildern wurde ein DeepLabv3+neuronales Netzwerk mit dem ECMT-Verfahren f{\"u}r semi-supervised learning trainiert, um Blutgef{\"a}ße in Echtzeit erkennen zu k{\"o}nnen. F{\"u}r die Evaluation wurde ein Videotest mit 101 Videoclips aus 15 vom Trainingsdatensatz separaten Prozeduren mit 200 vordefinierten Gef{\"a}ßen erstellt. Die Gef{\"a}ßdetektionsrate, -zeit und -dauer, definiert als der Prozentsatz an Einzelbildern eines Videos bezogen auf den Goldstandard, auf denen ein definiertes Gef{\"a}ß erkannt wurde, wurden erhoben. Acht erfahrene Endoskopiker wurden mithilfe dieses Videotests im Hinblick auf Gef{\"a}ßdetektion getestet, wobei eine H{\"a}lfte der Videos nativ, die andere H{\"a}lfte nach Markierung durch den KI-Algorithmus angesehen wurde. Ergebnisse Der mittlere Dice Score des Algorithmus f{\"u}r Blutgef{\"a}ße war 68\%. Die mittlere Gef{\"a}ßdetektionsrate im Videotest lag bei 94\% (96\% f{\"u}r ESD; 74\% f{\"u}r POEM). Die mediane Gef{\"a}ßdetektionszeit des Algorithmus lag bei 0,32 Sekunden (0,3 Sekunden f{\"u}r ESD; 0,62 Sekunden f{\"u}r POEM). Die mittlere Gef{\"a}ßdetektionsdauer lag bei 59,1\% (60,6\% f{\"u}r ESD; 44,8\% f{\"u}r POEM) des Goldstandards. Alle Endoskopiker hatten mit KI-Unterst{\"u}tzung eine h{\"o}here Gef{\"a}ßdetektionsrate als ohne KI. Die mittlere Gef{\"a}ßdetektionsrate ohne KI lag bei 56,4\%, mit KI bei 71,2\% (p<0.001). Schlussfolgerung KI-Unterst{\"u}tzung war mit einer statistisch signifikant h{\"o}heren Gef{\"a}ßdetektionsrate vergesellschaftet. Die mediane Gef{\"a}ßdetektionszeit von deutlich unter einer Sekunde sowie eine Gef{\"a}ßdetektionsdauer von gr{\"o}ßer 50\% des Goldstandards wurden f{\"u}r den klinischen Einsatz als ausreichend erachtet. In prospektiven Anwendungsstudien sollte der KI-Algorithmus auf klinische Relevanz getestet werden.}, language = {de} } @misc{ScheppachMendelMuzalyovaetal., author = {Scheppach, Markus W. and Mendel, Robert and Muzalyova, Anna and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Yip, Hon Chi and Lau, Louis Ho Shing and G{\"o}lder, Stefan Karl and Schmidt, Arthur and Kouladouros, Konstantinos and Abdelhafez, Mohamed and Walter, B. and Meinikheim, Michael and Chiu, Philip Wai Yan and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {K{\"u}nstliche Intelligenz erh{\"o}ht die Gef{\"a}ßerkennung von Endoskopikern bei third space Endoskopie}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {62}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {09}, publisher = {Georg Thieme Verlag KG}, doi = {10.1055/s-0044-1790087}, pages = {e830}, abstract = {Einleitung: K{\"u}nstliche Intelligenz (KI)-Algorithmen unterst{\"u}tzen Endoskopiker bei der Erkennung und Charakterisierung von Kolonpolypen in der klinischen Praxis und f{\"u}hren zu einer Erh{\"o}hung der Adenomdetektionsrate. Auch bei therapeutischen Maßnahmen wie der endoskopischen Submukosadissektion (ESD) k{\"o}nne relevante anatomische Strukturen durch KI mit hoher Genauigkeit erkannt und im endoskopischen Bild in Echtzeit markiert werden. Der Effekt einer solchen Applikation auf die Gef{\"a}ßdetektion von Endoskopikern ist bislang nicht erforscht. Ziele: In dieser Studie wurde der Effekt eines KI-Algorithmus zur Echtzeit-Gef{\"a}ßmarkierung bei ESD auf die Gef{\"a}ßdetektionsrate von Endoskopikern untersucht. Methodik: 59 third space Endoskopievideos wurde aus der Datenbank des Universit{\"a}tsklinikums Augsburg extrahiert. Auf 5470 Einzelbildern dieser Untersuchungen wurde submukosale Blutgef{\"a}ße annotiert. Zusammen mit weiteren 179681 unmarkierten Bildern wurde ein DeepLabV3+ neuronales Netzwerk mit einer semi-supervised learning Methode darin trainiert, submukosale Blutgef{\"a}ße auf dem endoskopischen Bild zu erkennen und in Echtzeit einzuzeichnen. Anhand eines Videotests mit 101 Videoclips und 200 vordefinierten Blutgef{\"a}ßen wurden 19 Endoskopiker mit und ohne KI Unterst{\"u}tzung getestet. Ergebnis: Der Algorithmus erkannte in dem Videotest 93.5\% der Gef{\"a}ße in einer Detektionszeit von im Median 0,3 Sekunden. Die Gef{\"a}ßdetektionsrate von Endoskopikern erh{\"o}hte sich durch KI Unterst{\"u}tzung von 56,4\% auf 72,4\% (p<0.001). Die Gef{\"a}ßdetektionszeit reduzierte sich durch KI-Unterst{\"u}tzung von 6,7 auf 5.2 Sekunden (p<0.001). Der Algorithmus zeigte eine Rate an falsch positiven Detektionen in 4.5\% der Einzelbilder. Falsch positiv erkannte Strukturen wurde k{\"u}rzer detektiert, als richtig positive (0.7 und 6.0 Sekunden, p<0.001). Schlussfolgerung: KI Unterst{\"u}tzung f{\"u}hrte zu einer erh{\"o}hten Gef{\"a}ßdetektionsrate und schnelleren Gef{\"a}ßdetektionszeit von Endoskopikern. Ein m{\"o}glicher klinischer Effekt auf die intraprozedurale Komplikationsrate oder Operationszeit k{\"o}nnte in prospektiven Studien ermittelt werden.}, language = {de} }