@article{HirmerDanilovGiglbergeretal., author = {Hirmer, Marion and Danilov, Sergey N. and Giglberger, Stephan and Putzger, J{\"u}rgen and Niklas, Andreas and J{\"a}ger, Andreas and Hiller, Karl-Anton and Schmalz, Gottfried and Redlich, Britta and Schulz, Irene and Monkman, Gareth J. and Ganichev, Sergey D.}, title = {Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality}, series = {Journal of Infrared, Millimeter, and Terahertz Waves}, volume = {33}, journal = {Journal of Infrared, Millimeter, and Terahertz Waves}, publisher = {Springer}, issn = {1866-6906}, doi = {10.1007/s10762-012-9872-3}, pages = {366 -- 375}, abstract = {Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality.}, language = {en} } @incollection{NiklasHillerJaegeretal., author = {Niklas, Andreas and Hiller, Karl-Anton and J{\"a}ger, Andreas and Brandt, M. and Putzger, J{\"u}rgen and Ermer, C. and Schulz, Irene and Monkman, Gareth J. and Giglberger, Stephan and Hirmer, Marion and Danilov, Sergey N. and Ganichev, Sergey D. and Schmalz, Gottfried}, title = {In vitro optical detection of simulated blood pulse in a human tooth pulp model}, series = {Biocompatibility of Dental Materials}, booktitle = {Biocompatibility of Dental Materials}, editor = {Arenholt-Bindslev, Dorthe and Schmalz, Gottfried}, publisher = {Springer}, address = {Berlin ; Heidelberg}, language = {en} } @misc{HirmerDanilovGiglbergeretal., author = {Hirmer, Marion and Danilov, Sergey N. and Giglberger, Stephan and Putzger, J{\"u}rgen and Niklas, Andreas and J{\"a}ger, Andreas and Hiller, Karl-Anton and Schmalz, Gottfried and Redlich, B. and Monkman, Gareth J. and Ganichev, Sergey D.}, title = {Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality}, series = {PACS, November 11, 2011}, journal = {PACS, November 11, 2011}, abstract = {Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality.}, language = {en} } @inproceedings{DrexlerHirmerDanilovetal., author = {Drexler, C. and Hirmer, Marion and Danilov, Sergey N. and Giglberger, Stephan and Putzger, J{\"u}rgen and Niklas, Andreas and J{\"a}ger, Andreas and Hiller, K.A and L{\"o}ffler, S. and Schmalz, Gottfried and Redlich, B. and Schulz, Irene and Monkman, Gareth J. and Ganichev, Sergey D.}, title = {Infrared spectroscopy for clinical diagnosis of dental pulp vitality}, series = {37th International Conference on Infrared, Millimetre, and Terahertz Waves (IRMMW-THz 37), 23-28 September 2012 , Wollongong, Australia}, booktitle = {37th International Conference on Infrared, Millimetre, and Terahertz Waves (IRMMW-THz 37), 23-28 September 2012 , Wollongong, Australia}, publisher = {IEEE}, address = {Piscataway, NJ}, doi = {10.1109/IRMMW-THz.2012.6380091}, abstract = {Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated over a wide spectral range, from visible to terahertz (THz) light. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality.}, language = {en} } @inproceedings{SchulzPutzgerNiklasetal., author = {Schulz, Irene and Putzger, J{\"u}rgen and Niklas, Andreas and Brandt, M. and J{\"a}ger, Andreas and Hardt, A. and Kn{\"o}rzer, S. and Hiller, Karl-Anton and L{\"o}ffler, S. and Schmalz, Gottfried and Danilov, Sergey N. and Giglberger, Stephan and Hirmer, Marion and Ganichev, Sergey D. and Monkman, Gareth J.}, title = {PPG signal acquisition and analysis on in vitro tooth model for dental pulp vitality assessmen}, series = {2nd Applied Research Conference 2012 (ARC 2012), 25./26. June 2012, Nuremberg}, booktitle = {2nd Applied Research Conference 2012 (ARC 2012), 25./26. June 2012, Nuremberg}, publisher = {Shaker-Verlag}, address = {Aachen}, organization = {ARC}, pages = {142 -- 146}, language = {en} } @article{MangSchnabelCrumetal., author = {Mang, Andreas and Schnabel, Julia A. and Crum, William R. and Modat, Marc and Camara-Rey, Oscar and Palm, Christoph and Caseiras, Gisele Brasil and J{\"a}ger, H. Rolf and Ourselin, S{\´e}bastien and Buzug, Thorsten M. and Hawkes, David J.}, title = {Consistency of parametric registration in serial MRI studies of brain tumor progression}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {3}, journal = {International Journal of Computer Assisted Radiology and Surgery}, number = {3-4}, doi = {10.1007/s11548-008-0234-5}, pages = {201 -- 211}, abstract = {Object The consistency of parametric registration in multi-temporal magnetic resonance (MR) imaging studies was evaluated. Materials and methods Serial MRI scans of adult patients with a brain tumor (glioma) were aligned by parametric registration. The performance of low-order spatial alignment (6/9/12 degrees of freedom) of different 3D serial MR-weighted images is evaluated. A registration protocol for the alignment of all images to one reference coordinate system at baseline is presented. Registration results were evaluated for both, multimodal intra-timepoint and mono-modal multi-temporal registration. The latter case might present a challenge to automatic intensity-based registration algorithms due to ill-defined correspondences. The performance of our algorithm was assessed by testing the inverse registration consistency. Four different similarity measures were evaluated to assess consistency. Results Careful visual inspection suggests that images are well aligned, but their consistency may be imperfect. Sub-voxel inconsistency within the brain was found for allsimilarity measures used for parametric multi-temporal registration. T1-weighted images were most reliable for establishing spatial correspondence between different timepoints. Conclusions The parametric registration algorithm is feasible for use in this application. The sub-voxel resolution mean displacement error of registration transformations demonstrates that the algorithm converges to an almost identical solution for forward and reverse registration.}, subject = {Kernspintomografie}, language = {en} }