@inproceedings{ThielHaynackGeyeretal., author = {Thiel, Charlotte and Haynack, Alexander and Geyer, Sebastian and Gehlen, Christoph and Braun, Alexander}, title = {CarboDB-Open Access Database for Concrete Carbonation}, series = {Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020), Volume 1: Strategies for a Resilient Built Environment, March 9-14, 2020, Guimar{\~a}es, Portugal}, booktitle = {Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020), Volume 1: Strategies for a Resilient Built Environment, March 9-14, 2020, Guimar{\~a}es, Portugal}, editor = {Pereira, Eduardo B. and Barros, Joaquim A. O. and Figueiredo, Fabio P.}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-76547-7}, doi = {10.1007/978-3-030-76547-7_8}, pages = {79 -- 90}, abstract = {Sustainable service life design of reinforced concrete structures relies on accurate input values. However, in the field of carbonation induced corrosion some input parameters and statistical distributions still need to be validated for worldwide climate conditions. Furthermore, many well-published literature data is not considered due to different storage conditions. At the suggestion of CEN/TC 104/SC1/WG1 the database "CarboDB" was created providing open access to extensive information on concrete carbonation under different storage conditions. The natural carbonation coefficient as well as the minimum concrete cover can be calculated for chosen situations. CarboDB provides reliable data on concrete carbonation in order to increase existing knowledge on concrete carbonation. The database is available online at http://carbodb.bgu.tum.de//. By registration further contribution is possible and appreciated. New insights can be gained by merging several sources. For natural carbonation, testing only up to 140 days underestimates the carbonation progress of concretes with limestone fillers and high amount of ground granulated blast furnace slag.}, language = {en} } @inproceedings{HaynackSchneiderTimothyetal., author = {Haynack, Alexander and Schneider, Alexander and Timothy, Jithender J. and Kr{\"a}nkel, Thomas and Gehlen, Christoph and Thiel, Charlotte}, title = {Effect of Chloride Concentration on the Freeze-Thaw Resistance of Concrete}, series = {International RILEM Conference on Synergising expertise towards sustainability and robustness of CBMs and concrete structures, SynerCrete'23 - Volume 2}, booktitle = {International RILEM Conference on Synergising expertise towards sustainability and robustness of CBMs and concrete structures, SynerCrete'23 - Volume 2}, publisher = {Springer}, address = {Cham}, doi = {10.1007/978-3-031-33187-9_83}, pages = {911 -- 921}, abstract = {Performance test methods intend to provide a fast, accurate and precise determination of a particular building material property and thus determine the associated material performance. In concrete, various performance tests are used to classify existing or to approve new materials, to compare concrete compositions or to determine causes of damage in existing structures. The challenge of such test methods is to accelerate natural (very slow) mechanisms to determine the material performance precisely within a short time. However, the attack on the material must not be unrealistically intensive, but must represent reality, just in fast motion. The performance tests used to demonstrate the freeze-thaw resistance of concrete employ a 3\% NaCl solution, with literature data ranging from 1\% to 10\% showing that low concentrations can result in higher surface scaling. In this paper, mortar and concrete specimens are tested at 0, 1, 3, 6, and 9\% NaCl solution following the CDF procedure (DIN CEN/TS 12390-9:2017-05). The results are discussed against the background of the existing literature and show that the damage is critically dependent on the pore system and thus also on the effect of the micro-ice lens pump. With increasing freeze-thaw exposition, the pessimum in the external damage shifts towards a de-icing salt concentration of 6\%. Furthermore, a novel test methodology based on 3D-laserscanning is presented to determine scaling accurately by eliminating side effects that are typically present in current standards.}, language = {en} } @article{HaynackSekandarJithenderetal., author = {Haynack, Alexander and Sekandar, Zadran and Jithender, J. Timothy and Gambarelli, Serena and Kr{\"a}nkel, Thomas and Thiel, Charlotte and Ozbolt, Josko and Gehlen, Christoph}, title = {Can a Hend-Held 3D Scanner Capture Temperature-Induced Strain of Mortar Samples? Comparison between Experimental Measurements and Numerical Simulations}, series = {mathematics}, volume = {11}, journal = {mathematics}, number = {17}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math11173672}, abstract = {The expected lifespan of cement-based materials, particularly concrete, is at least 50 years. Changes in the pore structure of the material need to be considered due to external influences and associated transport processes. The expansion behaviour of concrete and mortar during freeze-thaw attacks, combined with de-icing salt agents, is crucial for both internal and external damage. It is essential to determine and simulate the expansion behaviour of these materials in the laboratory, as well as detect the slow, long-term expansion in real structures. This study measures the expansion of mortar samples during freeze-thaw loading using a high-resolution hand-held 3D laser scanner. The specimens are prepared with fully or partially saturated pore structures through water storage or drying. During freeze-thaw experiments, the specimens are exposed to pure water or a 3\% sodium chloride solution (NaCl). Results show contraction during freezing and subsequent expansion during thawing. Both test solutions exhibit similar expansion behaviour, with differences primarily due to saturation levels. Further investigations are required to explore the changing expansion behaviour caused by increasing microcracking resulting from continuous freeze-thaw cycles. A numerical analysis using a 3D coupled hygro-thermo-mechanical (HTM) model is conducted to examine the freeze-thaw behaviour of the mortar. The model accurately represents the freezing deformation during the freeze-thaw cycle.}, language = {en} } @article{HaynackTimothyKraenkeletal., author = {Haynack, Alexander and Timothy, Jithender J. and Kr{\"a}nkel, Thomas and Gehlen, Christoph and Thiel, Charlotte}, title = {Analyse des Frost-Tausalz-Widerstands zementgebundener Baustoffe mittels 3D-Laserscanning}, series = {ce/papers: Proceedings in Civil Engineering}, volume = {6}, journal = {ce/papers: Proceedings in Civil Engineering}, number = {6}, publisher = {Ernst \& Sohn}, issn = {2509-7075}, doi = {10.1002/cepa.2951}, pages = {1189 -- 1196}, abstract = {Eine Herausforderung performancebasierter Pr{\"u}fverfahren zur Bewertung der Dauerhaftigkeit ist die Beschleunigung nat{\"u}rlicher Mechanismen. Dies ist notwendig, um innerhalb kurzer Zeit die Langzeit-Leistungsf{\"a}higkeit ermitteln zu k{\"o}nnen. Die Bestimmung der Frost-Tausalzbest{\"a}ndigkeit von Beton kann durch den CDF-Test erfolgen, welcher f{\"u}r Betone mit ausreichendem Frost-Tausalz-Widerstand sehr gut funktioniert. Bei Proben mit einer unzureichenden bzw. unbekannten Performance k{\"o}nnen erh{\"o}hte Randabwitterungen auftreten, welche durch das Abl{\"o}sen des seitlichen Abdichtbands entstehen. Der zunehmende Randeinfluss f{\"u}hrt so zu einer Verf{\"a}lschung der Ergebnisse und zu einer Untersch{\"a}tzung der tats{\"a}chlichen Performance des Bauteils. In diesem Beitrag werden M{\"o}rtel- und Betonprobek{\"o}rper mit unterschiedlichen Abwitterungsraten in Anlehnung an das CDF-Verfahren untersucht. Zus{\"a}tzlich wird die Oberfl{\"a}chensch{\"a}digung der Proben anhand einer neuartigen Messmethode mittels hochaufl{\"o}sendem 3D-Laserscanning ausgewertet. Die Ergebnisse zeigen, dass die Randeffekte mit der Laserscan-Methode umgangen und vergleichbare Ergebnisse zu den CDF-Untersuchungen erzielt werden k{\"o}nnen. Somit k{\"o}nnen Betone ohne Randeinfl{\"u}sse charakterisiert und eine pr{\"a}zise Prognose der Langzeitbest{\"a}ndigkeit getroffen werden.}, language = {de} }