@article{FrazzicaPalombaDawoudetal., author = {Frazzica, Andrea and Palomba, Valeria and Dawoud, Belal and Gull{\`i}, Giuseppe and Brancato, Vincenza and Sapienza, Alessio and Vasta, Salvatore and Freni, Angelo and Costa, Fabio and Restuccia, Giovanni}, title = {Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair}, series = {Applied Energy}, volume = {174}, journal = {Applied Energy}, publisher = {Elsevier}, doi = {10.1016/j.apenergy.2016.04.080}, pages = {15 -- 24}, abstract = {In the present paper design, realization and testing of a novel small scale adsorption refrigerator prototype based on activated carbon/ethanol working pair is described. Firstly, experimental activity has been carried out for identification of the best performing activated carbon available on the market, through the evaluation of the achievable thermodynamic performance both under air conditioning and refrigeration conditions. Once identified the best performing activated carbon, the design of the adsorber was developed by experimental dynamic performance analysis, carried out by means of the Gravimetric-Large Temperature Jump (G-LTJ) apparatus available at CNR ITAE lab. Finally, the whole 0.5 kW refrigerator prototype was designed and built. First experimental results both under reference air conditioning and refrigeration cycles have been reported, to check the achievable performance. High Specific Cooling Powers (SCPs), 95 W/kg and 50 W/kg, for air conditioning and refrigeration respectively, were obtained, while the COP ranged between 0.09 and 0.11, thus showing an improvement of the current state of the art. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PalombaDawoudSapienzaetal., author = {Palomba, Valeria and Dawoud, Belal and Sapienza, Alessio and Vasta, Salvatore and Frazzica, Andrea}, title = {On the impact of different management strategies on the performance of a two-bed activated carbon/ethanol refrigerator: An experimental study}, series = {Energy conversion and management}, volume = {142}, journal = {Energy conversion and management}, publisher = {Elsevier}, doi = {10.1016/j.enconman.2017.03.055}, pages = {322 -- 333}, abstract = {In the present work, an experimental study on a lab-scale adsorption refrigerator, based on activated carbon/ethanol working pair is reported. An extensive testing campaign has been carried out at the CNR ITAE laboratory, with multiple aims. First, the performance has been evaluated in terms of both COP and Specific Cooling Power (SCP), under different boundary conditions, including both air conditioning and refrigeration applications. Attractive SCPs, up to 180 W/kg and 70 W/kg for air conditioning and refrigeration, respectively, were measured. Under the same conditions, COP between 0.17 and 0.08 were obtained. In addition, different management strategies, namely, heat recovery between adsorbers and re-allocation of phase durations, were evaluated to identify their influence on the system. Both strategies confirmed the possibility of increasing COP and SCP up to 40\% and 25\%, respectively. Moreover, a design analysis based on the experimental results has been carried out, to suggest possible improvements of the system. The obtained results demonstrated the possibility of employing a non-toxic refrigerant like ethanol reaching performance comparable with other harmful refrigerants like ammonia and methanol. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} }