@inproceedings{DeSouzaJrPassosMendeletal., author = {De Souza Jr., Luis Antonio and Passos, Leandro A. and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {Fine-tuning Generative Adversarial Networks using Metaheuristics}, series = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-33197-9}, doi = {10.1007/978-3-658-33198-6_50}, pages = {205 -- 210}, abstract = {Barrett's esophagus denotes a disorder in the digestive system that affects the esophagus' mucosal cells, causing reflux, and showing potential convergence to esophageal adenocarcinoma if not treated in initial stages. Thus, fast and reliable computer-aided diagnosis becomes considerably welcome. Nevertheless, such approaches usually suffer from imbalanced datasets, which can be addressed through Generative Adversarial Networks (GANs). Such techniques generate realistic images based on observed samples, even though at the cost of a proper selection of its hyperparameters. Many works employed a class of nature-inspired algorithms called metaheuristics to tackle the problem considering distinct deep learning approaches. Therefore, this paper's main contribution is to introduce metaheuristic techniques to fine-tune GANs in the context of Barrett's esophagus identification, as well as to investigate the feasibility of generating high-quality synthetic images for early-cancer assisted identification.}, subject = {Endoskopie}, language = {en} } @article{EbigboMendelRueckertetal., author = {Ebigbo, Alanna and Mendel, Robert and R{\"u}ckert, Tobias and Schuster, Laurin and Probst, Andreas and Manzeneder, Johannes and Prinz, Friederike and Mende, Matthias and Steinbr{\"u}ck, Ingo and Faiss, Siegbert and Rauber, David and De Souza Jr., Luis Antonio and Papa, Jo{\~a}o Paulo and Deprez, Pierre and Oyama, Tsuneo and Takahashi, Akiko and Seewald, Stefan and Sharma, Prateek and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of Artificial Intelligence: A pilot Study}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {09}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/a-1311-8570}, pages = {878 -- 883}, abstract = {Background and aims: The accurate differentiation between T1a and T1b Barrett's cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.}, subject = {Maschinelles Lernen}, language = {en} } @misc{RoemmeleMendelRauberetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Rauber, David and R{\"u}ckert, Tobias and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Endoscopic Diagnosis of Eosinophilic Esophagitis Using a deep Learning Algorithm}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {S 01}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0041-1724274}, abstract = {Aims Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI). Methods 401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images. Results EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793. Conclusions To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true "optical biopsy" but more work is needed.}, language = {en} } @misc{ScheppachRauberMendeletal., author = {Scheppach, Markus W. and Rauber, David and Mendel, Robert and Palm, Christoph and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Detection Of Celiac Disease Using A Deep Learning Algorithm}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {S 01}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0041-1724970}, abstract = {Aims Celiac disease (CD) is a complex condition caused by an autoimmune reaction to ingested gluten. Due to its polymorphic manifestation and subtle endoscopic presentation, the diagnosis is difficult and thus the disorder is underreported. We aimed to use deep learning to identify celiac disease on endoscopic images of the small bowel. Methods Patients with small intestinal histology compatible with CD (MARSH classification I-III) were extracted retrospectively from the database of Augsburg University hospital. They were compared to patients with no clinical signs of CD and histologically normal small intestinal mucosa. In a first step MARSH III and normal small intestinal mucosa were differentiated with the help of a deep learning algorithm. For this, the endoscopic white light images were divided into five equal-sized subsets. We avoided splitting the images of one patient into several subsets. A ResNet-50 model was trained with the images from four subsets and then validated with the remaining subset. This process was repeated for each subset, such that each subset was validated once. Sensitivity, specificity, and harmonic mean (F1) of the algorithm were determined. Results The algorithm showed values of 0.83, 0.88, and 0.84 for sensitivity, specificity, and F1, respectively. Further data showing a comparison between the detection rate of the AI model and that of experienced endoscopists will be available at the time of the upcoming conference. Conclusions We present the first clinical report on the use of a deep learning algorithm for the detection of celiac disease using endoscopic images. Further evaluation on an external data set, as well as in the detection of CD in real-time, will follow. However, this work at least suggests that AI can assist endoscopists in the endoscopic diagnosis of CD, and ultimately may be able to do a true optical biopsy in live-time.}, language = {en} } @article{DeSouzaJrMendelStrasseretal., author = {De Souza Jr., Luis Antonio and Mendel, Robert and Strasser, Sophia and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Convolutional Neural Networks for the evaluation of cancer in Barrett's esophagus: Explainable AI to lighten up the black-box}, series = {Computers in Biology and Medicine}, volume = {135}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, issn = {0010-4825}, doi = {10.1016/j.compbiomed.2021.104578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-20126}, pages = {1 -- 14}, abstract = {Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their level of accountability and transparency must be provided in such evaluations. The reliability related to machine learning predictions must be explained and interpreted, especially if diagnosis support is addressed. For this task, the black-box nature of deep learning techniques must be lightened up to transfer its promising results into clinical practice. Hence, we aim to investigate the use of explainable artificial intelligence techniques to quantitatively highlight discriminative regions during the classification of earlycancerous tissues in Barrett's esophagus-diagnosed patients. Four Convolutional Neural Network models (AlexNet, SqueezeNet, ResNet50, and VGG16) were analyzed using five different interpretation techniques (saliency, guided backpropagation, integrated gradients, input × gradients, and DeepLIFT) to compare their agreement with experts' previous annotations of cancerous tissue. We could show that saliency attributes match best with the manual experts' delineations. Moreover, there is moderate to high correlation between the sensitivity of a model and the human-and-computer agreement. The results also lightened that the higher the model's sensitivity, the stronger the correlation of human and computational segmentation agreement. We observed a relevant relation between computational learning and experts' insights, demonstrating how human knowledge may influence the correct computational learning.}, subject = {Deep Learning}, language = {en} } @misc{MendelDeSouzaJrRauberetal., author = {Mendel, Robert and De Souza Jr., Luis Antonio and Rauber, David and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Abstract: Semi-supervised Segmentation Based on Error-correcting Supervision}, series = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, journal = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-33197-9}, doi = {10.1007/978-3-658-33198-6_43}, pages = {178}, abstract = {Pixel-level classification is an essential part of computer vision. For learning from labeled data, many powerful deep learning models have been developed recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation network is judged by an additional network.}, subject = {Deep Learning}, language = {en} }