@inproceedings{Maiwald, author = {Maiwald, Frederik}, title = {Simulation of Pyrometer Based Temperature Measurement Systems using Non-Sequential Raytracing}, series = {Applied Research Conference 2018, ARC 2018, 10 July 2018, Deggendorf}, booktitle = {Applied Research Conference 2018, ARC 2018, 10 July 2018, Deggendorf}, editor = {Mottok, J{\"u}rgen and Reichenberger, Marcus and Bogner, Werner}, publisher = {pro Business GmbH}, address = {Berlin}, pages = {168 -- 171}, language = {en} } @inproceedings{MaiwaldEnglmaierHierl, author = {Maiwald, Frederik and Englmaier, Stephan and Hierl, Stefan}, title = {Absorber-free Laser Transmission Welding of Transparent Polymers using Fixed Focus Optics and 3D Laser Scanner}, series = {Procedia CIRP}, volume = {94}, booktitle = {Procedia CIRP}, doi = {10.1016/j.procir.2020.09.117}, pages = {686 -- 690}, abstract = {Laser transmission welding is a well-known joining technology for thermoplastics, providing reliable and hermetical sealing without adhesives or particle formation. The main advantages of laser-based energy input - high precision, no additional adhesive and no particle emission - are essential for medical and optical applications. To obtain sufficient absorption in visually transparent polymers, thulium fibre lasers emitting in the polymers' intrinsic absorption spectrum are used. Optics with high numerical aperture provide large intensity gradients inside the specimen, enabling selective fusing in the joining zone. Although the basic feasibility has already been demonstrated, the welding process lacks stability and productivity. Aim of this work is the determination of optimized settings for a fast and reliable welding process. Thus, the interplay of process parameters as well as their impact on the seam are analysed by thermal simulations. Calculated settings are verified by welding tests with COC, PA6 and PETG, using a fixed-focus optics and a 3D laser scanner with up to 200 mm/s feed rate.}, language = {en} } @inproceedings{MaiwaldEnglmaierHierl, author = {Maiwald, Frederik and Englmaier, Stephan and Hierl, Stefan}, title = {Online pyrometry for weld seam localization in absorber-free laser transmission welding of transparent polymers}, series = {21st International Symposium on Laser Precision Microfabrication: Dresden, 26.06.2020}, booktitle = {21st International Symposium on Laser Precision Microfabrication: Dresden, 26.06.2020}, abstract = {Optical and medical devices made of transparent polymers are gaining popularity because of its cost advantages. The manufacturing technology must be able to meet the high demands of these applications. Advantages of laser transmission welding - contactless input of energy, precision, no adhesives and no particle formation - can be exploited here. For absorber-free welding, lasers emitting in the polymers' intrinsic absorption spectrum are used. Focusing the laser beam with high NA enables selective fusing of the joining zone. Since a molten upper surface leads to visible and palpable irregularities, the lateral expansion of the weld seam is monitored in this work. Welding tests with 1 mm thick plates of COC are performed and monitored by pyrometry. Distances between seam and surface measured in thin cuts and are compared with the pyrometer signal. This shows that the localization of the weld seam is possible and proper and faulty parts can be distinguished by pyrometry.}, subject = {Laserdurchstrahlschweissen}, language = {en} } @inproceedings{MaiwaldTroegerHierl, author = {Maiwald, Frederik and Tr{\"o}ger, Johannes and Hierl, Stefan}, title = {Automated weld seam evaluation and 2D simulation parameter calibration for absorber-free laser transmission welding}, series = {Lasers in Manufacturing Conference (LIM 2023), 26. Juni bis 29. Juni 2023, M{\"u}nchen}, booktitle = {Lasers in Manufacturing Conference (LIM 2023), 26. Juni bis 29. Juni 2023, M{\"u}nchen}, publisher = {Wissenschaftliche Gesellschaft Lasertechnik und Photonik e.V. (WLT)}, pages = {10}, abstract = {Absorber-free laser transmission welding enables clean and precise joining of plastics without additives or adhesives. It is therefore well suited to produce optical and medical devices, which place high demands on cleanliness and accuracy. However, the weld usually has an undesirably large vertical expansion, causing bulges and distortion. To improve this, the intensity distribution of the laser beam as well as the processing strategy must be adapted. Due to the complexity, this is aided by process simulation. However, simulation parameter calibration and verification are usually done considering the seam width and height, which is of limited significance. To overcome this, we propose a new method for image processing of microtome sections, determining the spatially resolved geometry of the weld. Thus, the deviation between experiment and simulation can be calculated pixel by pixel. This spatially resolved value is predestined for the calibration of the simulation parameters: For a parameter field with 18 different settings, the total deviation between experiment and simulation is less than 11 \% after calibration.}, language = {en} } @inproceedings{SchmailzlGeisslerMaiwaldetal., author = {Schmailzl, Anton and Geißler, Bastian and Maiwald, Frederik and Laumer, Tobias and Schmidt, Michael and Hierl, Stefan}, title = {Transformation of Weld Seam Geometry in Laser Transmission Welding by Using an Additional Integrated Thulium Fiber Laser}, series = {Lasers in Manufacturing - LIM 2017, Conference Proceedings}, booktitle = {Lasers in Manufacturing - LIM 2017, Conference Proceedings}, editor = {Esen, Cermal}, address = {M{\"u}nchen}, pages = {1 -- 10}, language = {en} }