@article{LiebherrHuttererMickertetal., author = {Liebherr, Raphaela B. and Hutterer, Albert and Mickert, Matthias J. and Vogl, Franziska C. and Beutner, Andrea and Lechner, Alfred and Hummel, Helmut and Gorris, Hans H.}, title = {Three-in-one enzyme assay based on single molecule detection in femtoliter arrays}, series = {Analytical and bioanalytical chemistry}, volume = {407}, journal = {Analytical and bioanalytical chemistry}, number = {24}, publisher = {Springer}, doi = {10.1007/s00216-015-8910-0}, pages = {7443 -- 7452}, abstract = {Large arrays of femtoliter-sized chambers are important tools for single molecule research as well as bioanalytical applications. We have optimized the design and fabrication of two array types consisting of 250 × 250 (62 500) femtoliter chambers either by surface etching of fused silica slides or by polydimethylsiloxane (PDMS) molding. Highly diluted solutions of β-galactosidase were enclosed in such arrays to monitor the fluorogenic reactions of hundreds of individual enzyme molecules in parallel by wide-field fluorescence microscopy. An efficient mechanical sealing procedure was developed to prevent diffusion of the fluorescent reaction product out of the chambers. Different approaches for minimizing non-specific surface adsorption were explored. The signal acquisition was optimized to grant both a large field of view and an efficient signal acquisition from each femtoliter chamber. The optimized femtoliter array has enabled a three-in-one enzyme assay system: First, the concentration of active enzyme can be determined in a digital way by counting fluorescent chambers in the array. Second, the activity of the enzyme bulk solution is given by averaging many individual substrate turnover rates without the need for knowing the exact enzyme concentration. Third-unlike conventional enzyme assays-the distribution of individual substrate turnover rates yields insight into the conformational heterogeneity in an enzyme population. The substrate turnover rates of single β-galactosidase molecules were found to be broadly distributed and independent of the type of femtoliter array. In general, both types of femtoliter arrays are highly sensitive platforms for enzyme analysis at the single molecule level and yield consistent results.}, language = {en} } @article{HuttererBauhuberHummeletal., author = {Hutterer, Albert and Bauhuber, Michael and Hummel, Helmut and Lechner, Alfred}, title = {Real-time analyses of metal contaminations in the ppb-range}, series = {Solid State Phenomena}, volume = {195}, journal = {Solid State Phenomena}, publisher = {Trans Tech Publications}, doi = {10.4028/www.scientific.net/SSP.195}, pages = {269 -- 273}, abstract = {In high-tech processing even smallest concentrations of metal ions in process media are of the utmost significance because they cause expensive production failures. Currently, cost-intensive equipment, special trained staff and time consuming analyses are necessary to detect these contaminations in order to avoid failures. The Centers of Excellence Nanochem and Sensorics at the University of Applied Sciences Regensburg (owner of patent PCT/EP2010/064833) and their industrial partner Micro-Epsilon GmbH are developing a new miniaturized measurement device which allows cost-effective real-time analysis of fluidic media for the first time. The system is fully automated and can be directly connected to wet-etch benches. Hence it allows continuous real-time surveillance of metal contaminations in the ppb-range through absorption spectroscopy in process media. For this purpose a very small sample amount of the process medium and a specific complexing agent are mixed together. This leads to an increase in the molar extinction coefficients and though even smallest contaminations become visible. The main parts of our development are the simulation of the different system components, their production and chemical analyses with the evaluation model.}, language = {en} } @misc{BeimlerLeisslEbneretal., author = {Beimler, Josef and Leißl, Caroline and Ebner, Lena and Elsner, Michael and M{\"u}hlbauer, Gerhard and Kohlert, Dieter and Schubert, Martin J. W. and Weiß, Andreas P. and Sterner, Michael and Raith, Thomas and Afranseder, Martin and Krapf, Tobias and Mottok, J{\"u}rgen and Siemers, Christian and Großmann, Benjamin and H{\"o}cherl, Johannes and Schlegl, Thomas and Schneider, Ralph and Milaev, Johannes and Rampelt, Christina and Roduner, Christian and Glowa, Christoph and Bachl, Christoph and Schliekmann, Claus and Gnan, Alfons and Grill, Martin and Ruhland, Karl and Piehler, Thomas and Friers, Daniel and Wels, Harald and Pflug, Kenny and Kucera, Markus and Waas, Thomas and Schlachetzki, Felix and Boy, Sandra and Pemmerl, Josef and Leis, Alexander and Welsch, Andreas F.X. and Graf, Franz and Zenger, Gerhard and Volbert, Klaus and Waas, Thomas and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Heyl, C. and Boldenko, A. and Monkman, Gareth J. and Kujat, Richard and Briem, Ulrich and Hierl, Stefan and Talbot, Sebastian and Schmailzl, Anton and Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert and Valentino, Piergiorgio and Romano, Marco and Ehrlich, Ingo and Furgiuele, Franco and Gebbeken, Norbert and Eisenried, Michael and Jungbauer, Bastian and Hutterer, Albert and Bauhuber, Michael and Mikrievskij, Andreas and Argauer, Monika and Hummel, Helmut and Lechner, Alfred and Liebetruth, Thomas and Schumm, Michael and Joseph, Saskia and Reschke, Michael and Soska, Alexander and Schroll-Decker, Irmgard and Putzer, Michael and Rasmussen, John and Dendorfer, Sebastian and Weber, Tim and Al-Munajjed, Amir Andreas and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias and Haug, Sonja and Rudolph, Clarissa and Zeitler, Annika and Schaubeck, Simon and Steffens, Oliver and Rechenauer, Christian and Schulz-Brize, Thekla and Fleischmann, Florian and Kusterle, Wolfgang and Beer, Anne and Wagner, Bernd and Neidhart, Thomas}, title = {Forschungsbericht 2013}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7990}, pages = {80}, language = {de} }