@article{KastenmeierSieglEhrlichetal., author = {Kastenmeier, Andreas and Siegl, Marco and Ehrlich, Ingo and Gebbeken, Norbert}, title = {Review of elasto-static models for three-dimensional analysis of thick-walled anisotropic tubes}, series = {Journal of Composite Materials}, journal = {Journal of Composite Materials}, publisher = {Sage}, doi = {10.1177/00219983231215863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-67521}, abstract = {Most shell or beam models of anisotropic tubes under bending have no validity for thick-walled structures. As a result, the need to develop three-dimensional formulations which allow a change in the stress, strain and displacement distributions across the radial component arises. Basic formulations on three-dimensional anisotropic elasticity were made either stressor displacement-based by Lekhnitskii or Stroh on plates. Lekhnitskii also was the first to expand these analytical formulations to tubes under various loading conditions. This paper presents a review of the stress and strain analysis of tube models using three-dimensional anisotropic elasticity. The focus lies on layered structures, like fiber-reinforced plastics, under various bending loads, although the basic formulations and models regarding axisymmetric loads are briefly discussed. One section is also dedicated to the determination of an equivalent bending stiffness of tubes.}, language = {en} }