@article{DehnhardtPalmVietenetal., author = {Dehnhardt, Markus and Palm, Christoph and Vieten, Andrea and Bauer, Andreas and Pietrzyk, Uwe}, title = {Quantifying the A1AR distribution in peritumoral zones around experimental F98 and C6 rat brain tumours}, series = {Journal of Neuro-Oncology}, volume = {85}, journal = {Journal of Neuro-Oncology}, doi = {10.1007/s11060-007-9391-6}, pages = {49 -- 63}, abstract = {Quantification of growth in experimental F98 and C6 rat brain tumours was performed on 51 rat brains, 17 of which have been further assessed by 3D tumour reconstruction. Brains were cryosliced and radio-labelled with a ligand of the peripheral type benzodiazepine-receptor (pBR), 3H-Pk11195 [(1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propylene)-3-isoquinoline-carboxamide)] by receptor autoradiography. Manually segmented and automatically registered tumours have been 3D-reconstructed for volumetric comparison on the basis of 3H-Pk11195-based tumour recognition. Furthermore automatically computed areas of -300 μm inner (marginal) zone as well as 300 μm and 600 μm outer tumour space were quantified. These three different regions were transferred onto other adjacent slices that had been labelled by receptor autoradiography with the A1 Adenosine receptor (A1AR)-ligand 3H-CPFPX (3H-8-cyclopentyl-3-(3-fluorpropyl)-1-propylxanthine) for quantitative assessment of A1AR in the three different tumour zones. Hence, a method is described for quantifying various receptor protein systems in the tumour as well as in the marginal invasive zones around experimentally implanted rat brain tumours and their representation in the tumour microenvironment as well as in 3D space. Furthermore, a tool for automatically reading out radio-labelled rat brain slices from auto radiographic films was developed, reconstructed into a consistent 3D-tumour model and the zones around the tumour were visualized. A1AR expression was found to depend upon the tumour volume in C6 animals, but is independent on the time of tumour development. In F98 animals, a significant increase in A1AR receptor protein was found in the Peritumoural zone as a function of time of tumour development and tumour volume.}, subject = {Hirntumor}, language = {en} } @inproceedings{PietrzykBauerVietenetal., author = {Pietrzyk, Uwe and Bauer, Dagmar and Vieten, Andrea and Bauer, Andreas and Langen, Karl-Josef and Zilles, Karl and Palm, Christoph}, title = {Creating consistent 3D multi-modality data sets from autoradiographic and histological images of the rat brain}, series = {IEEE Nuclear Science Symposium Conference Record}, volume = {6}, booktitle = {IEEE Nuclear Science Symposium Conference Record}, doi = {10.1109/NSSMIC.2004.1466754}, pages = {4001 -- 4003}, abstract = {Volumetric representations of autoradiographic and histological images gain ever more interest as a base to interpret data obtained with /spl mu/-imaging devices like microPET. Beyond supporting spatial orientation within rat brains especially autoradiographic images may serve as a base to quantitatively evaluate the complex uptake patterns of microPET studies with receptor ligands or tumor tracers. They may also serve for the development of rat brain atlases or data models, which can be explored during further image analysis or simulation studies. In all cases a consistent spatial representation of the rat brain, i.e. its anatomy and the corresponding quantitative uptake pattern, is required. This includes both, a restacking of the individual two-dimensional images and the exact registration of the respective volumes. We propose strategies how these volumes can be created in a consistent way and trying to limit the requirements on the circumstances during data acquisition, i.e. being independent from other sources like video imaging of the block face prior to cutting or high resolution micro-X-ray CT or micro MRI.}, language = {en} } @article{PalmDehnhardtVietenetal., author = {Palm, Christoph and Dehnhardt, Markus and Vieten, Andrea and Pietrzyk, Uwe and Bauer, Andreas and Zilles, Karl}, title = {3D rat brain tumors}, series = {Naunyn-Schmiedebergs Archives of Pharmacology}, volume = {371}, journal = {Naunyn-Schmiedebergs Archives of Pharmacology}, number = {R103}, language = {en} }