@inproceedings{JungreuthmayerBaumlWinteretal., author = {Jungreuthmayer, C. and Bauml, T. and Winter, O. and Ganchev, M. and Kapeller, H. and Haumer, Anton and Kral, Christian}, title = {Heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics}, series = {2011 IEEE International Electric Machines \& Drives Conference (IEMDC 2011) ; Niagara Falls, Ontario, Canada, 15 - 18 May 2011}, booktitle = {2011 IEEE International Electric Machines \& Drives Conference (IEMDC 2011) ; Niagara Falls, Ontario, Canada, 15 - 18 May 2011}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-4577-0060-6}, doi = {10.1109/IEMDC.2011.5994651}, pages = {515 -- 520}, abstract = {This paper presents a comprehensive computational fluid (CFD) model of a radial flux permanent magnet synchronous machine with interior magnets. In the CFD model the water jacket cooling and a simplified model of the topology of the distributed stator winding are considered. The heat sources of the CFD model are determined from a finite element analysis of the machine. The numerically determined temperature distributions of the machine are compared with measurement results from sensors located both in the stator and rotor. The particular focus of this paper is the analysis of the temperatures and the heat flow in the air gap and from the stator winding head and the rotor to the inner air.}, language = {en} }