TY - JOUR A1 - Auer, Simon A1 - Schiebl, Jonas A1 - Iversen, Kristoffer A1 - Subhash Chander, Divyaksh A1 - Damsgaard, Michael A1 - Dendorfer, Sebastian T1 - Biomechanical assessment of the design and efficiency of occupational exoskeletons with the AnyBody Modeling System T2 - Zeitschrift für Arbeitswissenschaften N2 - Exoskeletons were invented over 100 years ago but have only become popular in the last two decades, especially in the working industry as they can decrease work-related loads significantly. The most often used exoskeletons are for the lower back and shoulder since these are commonly affected body regions. All devices have in common that their purpose is to reduce internal loads of vulnerable body regions. Nevertheless, there is still little understanding on how biomechanical loading in the human body changes when exoskeletons are used. Therefore, further analyses are needed. A promising candidate for these are musculoskeletal models, which are based on an inverse dynamics approach and can calculate external parameters such as ground reaction forces or other interaction forces as well as internal parameters such as joint reaction forces or muscle activities. The various examples in the literature show that these models are increasingly used for assessing the biomechanical effects of exoskeletons on the human body. Furthermore, musculoskeletal models can calculate biomechanical loadings of humans with and without exoskeletons for all kinds of applications and allow an evaluation of their purpose. Practical Relevance: This article highlights the possibilities of musculoskeletal models for assessing the design and efficiency of occupational exoskeletons. Several practical use cases are described along with distinct descriptions of common implications of musculoskeletal and exoskeleton modeling. KW - Biomechanics KW - Ergonomics KW - Motion capture KW - Inverse dynamics Y1 - 2022 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/5604 N1 - Corresponding author: Sebastian Dendorfer VL - 76 IS - 4 SP - 440 EP - 449 PB - Springer Nature ER -