TY - JOUR A1 - Thumann, Philipp A1 - Buchner, Stefan A1 - Marburg, Steffen A1 - Wagner, Marcus T1 - A comparative study of Glinka and Neuber approaches for fatigue strength assessment on 42CrMoS4-QT specimens T2 - Strain N2 - In fatigue strength assessment, the methods based on ideal elastic stresses according to Basquin and the less established method based on elastic-plastic stress quantities according to Manson, Coffin and Morrow are applied. The former calculates loads using linear-elastic stresses, the latter requires elasticplastic evaluation parameters, such as stresses and strains. These can be determined by finite element analysis (FEA) with a linear-elastic constitutive law, and subsequent conversion to elastic-plastic loads, using the macro support formula by Neuber. In this contribution, an alternative approach to approximate elastic-plastic parameters proposed by Glinka is compared to the the strain-life method using Neuber's formula, as well as the stress-life method of Basquin. Several component tests on 42CrMoS4-QT specimens are investigated. To determine the input data for the fatigue strength evaluations, the entire test setup is computed by FEA. The nodal displacements from these validated full-model simulations are used as boundary conditions for a submodel simulation of a notch, whose results serve as input for the fatigue strength assessments. It is shown that all approaches provide a reliable assessment of components. Our key result is that the strain-life method using the concept by Glinka for notch stress computation, yields improved results in fatigue strength assessments. KW - 42CrMoS4-QT KW - fatigue strength KW - stress-life method KW - Glinka KW - strain-life method Y1 - 2023 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/6821 SN - 1475-1305 N1 - Corresponding author: Marcus Wagner VL - 2023 IS - e12470 PB - Wiley ER -