TY - JOUR A1 - Stelzer, Vera A1 - Krenkel, Lars T1 - 2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT T2 - Technology and health care : official journal of the European Society for Engineering and Medicine N2 - BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a Kármán vortex street behind the wing becomes CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil. KW - aerodynamics KW - computational fluid dynamics KW - Dragonfly wing KW - gliding flight KW - insect flight Y1 - 2022 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/2457 N1 - Corresponding author: Vera Stelzer VL - 30 IS - 1 SP - 283 EP - 289 PB - IOS Press ER -