TY - JOUR A1 - Wiesent, Lisa A1 - Spear, Ashley A1 - Nonn, Aida T1 - Computational analysis of the effects of geometric irregularities on the interaction of an additively manufactured 316L stainless steel stent and a coronary artery T2 - Journal of the Mechanical Behavior of Biomedical Materials N2 - Customized additively manufactured (laser powder bed fused (L-PBF)) stents could improve the treatment of complex lesions by enhancing stent-artery conformity. However, geometric irregularities inherent for L-PBF stents are expected to influence not only their mechanical behavior but also their interaction with the artery. In this study, the influence of geometrical irregularities on stent-artery interaction is evaluated within a numerical framework. Thus, computed arterial stresses induced by a reconstructed L-PBF stent model are compared to those induced by the intended stent model (also representing a stent geometry obtained from conventional manufacturing processes) and a modified CAD stent model that accounts for the increased strut thickness inherent for L-PBF stents. It was found that, similar to conventionally manufactured stents, arterial stresses are initially related to the basic stent design/topology, with the highest stresses occurring at the indentations of the stent struts. Compared to the stent CAD model, the L-PBF stent induces distinctly higher and more maximum volume stresses within the plaque and the arterial wall. In return, the modified CAD model overestimates the arterial stresses induced by the L-PBF stent due to its homogeneously increased strut thickness and thus its homogeneously increased geometric stiffness compared with the L-PBF stent. Therefore, the L-PBF-induced geometric irregularities must be explicitly considered when evaluating the L-PBF stent-induced stresses because the intended stent CAD model underestimates the arterial stresses, whereas the modified CAD model overestimates them. The arterial stresses induced by the L-PBF stent were still within the range of values reported for conventional stents in literature, suggesting that the use of L-PBF stents is conceivable in principle. However, because geometric irregularities, such as protruding features from the stent surface, could potentially damage the artery or lead to premature stent failure, further improvement of L-PBF stents is essential. KW - Laser powder bed fusion (L-PBF) KW - Cardiovascular stents KW - Finite element analysis (FEA) KW - Geometrical imperfections KW - Stent-artery interaction Y1 - 2021 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/2108 SN - 1751-6161 VL - 125 PB - Elsevier ER -