TY - CONF A1 - Rill, Georg A2 - Fleury, Agenor de T. T1 - Real-Time capable Multibody Model of dual Truck Front Axles T2 - Proceedings of DINAME 2023 - Selected Papers of the XIX International Symposium on Dynamic Problems of Mechanics, 26 Feb - 03 Mar 2023, PirenĂ³polis, Brazil N2 - Dual front steering axles are quite common in multi-axled heavy duty trucks. In standard layouts of such axle combinations, the steer motions of the wheels depend not only on the rotation of the steering wheel but also on the movements of the axles. As a consequence, the model complexity of the steering system should match with the complexity of the suspension model. The development of new technologies like advanced driver assistance systems or autonomous driving can only be accomplished efficiently using extensive simulation methods. Such kind of applications demand for computationally efficient vehicle models. This paper presents a steering system model for dual front axles of heavy duty trucks which supplements the suspension model of the axles. The model takes the torsional compliance of the steering column as well as the stiffness of the tie rods and the coupling rod into account. A quasi-static solution provides a straight forward computation including the partial derivatives required for an efficient implicit solver. The steering system model matches perfectly with comparatively lean, but sufficiently accurate multibody suspension models. KW - Steering System KW - Dual Axles KW - Multibody Model KW - Vehicle Dynamics KW - Real-Time Y1 - 2023 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/6141 UR - https://www.researchgate.net/publication/369256274_Real-Time_capable_Multibody_Model_of_dual_Truck_Front_Axles PB - Springer ER -