TY - JOUR A1 - Palomba, Valeria A1 - Nowak, Sebastian A1 - Dawoud, Belal A1 - Frazzica, Andrea T1 - Dynamic modelling of Adsorption systems: a comprehensive calibrated dataset for heat pump and storage applications T2 - Journal of energy storage N2 - The growing efforts for the development of clean and efficient energy systems require the use of a multi-disciplinary approach and the integration of multiple generation appliances. Among the fields that can be considered enabling technologies, adsorption systems for air conditioning and thermal energy storages, are constantly increasing their maturity. However, for a proper design and integration of such systems, there is the need for a simulation framework that is reliable and computationally convenient. In the present paper, the implementation of a dynamic model for adsorption systems is presented, which includes different components (adsorber, phase changer, sorption materials) and is structured as a library. Modelica language and the commercial software Dymola (R) are used for the analysis. Data for different heat exchangers and working pairs are calibrated using experimental results and the calibrated model is subsequently used for the design of an adsorber based on a plate heat exchanger for thermal energy storage applications. The results proved that the model is fast and can reproduce experimental results with good accuracy, thus being a useful tool for the design and optimization of the different components of sorption systems. KW - CHILLERS KW - DIFFUSION KW - ETHANOL ADSORPTION KW - Optimization KW - PERFORMANCE KW - SCALE KW - simulation KW - THERMAL-ENERGY STORAGE KW - TRANSFORMATION KW - WATER-ADSORPTION Y1 - 2021 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/2585 VL - 33 PB - Elsevier ER -