TY - JOUR A1 - Kral, Christian A1 - Haumer, Anton A1 - Kapeller, Hansjörg A1 - Pirker, Franz T1 - Design and Thermal Simulation of Induction Machines for Traction in Electric and Hybrid Electric Vehicles T2 - World Electric Vehicle Journal N2 - An electric traction machine for an electric or a hybrid electric vehicle is usually designed for a specific operating point or cycle. For such an operating point or cycle, the masses and the cooling circuit of the electric machine determine the time dependent temperature distribution within the machine. For a specific load cycle, the thermal simulation of the machine can reveal possible mass and size reductions for a given insulation class of the machine. In addition, such simulations allow the comparison of various cooling concepts. In the machine design process, the first step is a conventional electromagnetic machine design. From the geometric data of this design and the material properties, the parameters of a thermal equivalent circuit can be derived. The differential and algebraic equations of the thermal equivalent circuit are solved by a simulation tool to predict the temperatures of the critical parts in the electric machine. A thermal equivalent circuit is accurate enough to predict the thermal behavior of the critical parts in the electric machine, and yet not too complex, to obtain simulation results with moderate numerical effort. This enables an iterative design process to optimize the drive. KW - Induction Motor KW - Electric Drive KW - Modeling KW - Simulation KW - Thermal Management Y1 - 2007 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/7326 SN - 2032-6653 VL - 1 IS - 1 SP - 190 EP - 196 PB - MDPI ER -