TY - CONF A1 - Grauvogl, Dominik A1 - Stauder, Peter A1 - Hopfensperger, Bernhard A1 - Gerling, Dieter T1 - Multiphysics Design of a Wound Field Synchronous Machine with Magnetic Asymmetry T2 - Proceedings of the 2021 IEEE International Electric Machines & Drives Conference (IEMDC): 17-20 May 2021, Hartford, CT, USA N2 - In this paper a multiphysics development method is used for designing a novel wound field synchronous machine of the future generation of high voltage traction drives. This method covers the domains of electromagnetics, the mechanical strength, thermal behavior and the magnetic noise. It is shown that the proposed novel asymmetric design with a circular flux barrier in combination with an asymmetric pole offset is fulfilling the requirements according to performance and torque ripple. A fatigue strength rotor mechanic concept is included. A hybrid cooling concept consisting of a water jacket cooled stator and air cooled rotor ensures the needed continuous power. Unacceptable noise levels are excluded by investigating the equivalent radiated power (ERP) level due to radial forces in the air gap. Finally, the multi-physical workflow resulted in a fully developed component with a high degree of maturity. KW - air cooling KW - wound field synchronous machine KW - cooling concept KW - fatigue limit KW - flux barrier Y1 - 2022 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/3863 ER -