TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Ruwisch, Kevin A1 - Wollschlaeger, Joachim A1 - Shamonin (Chamonine), Mikhail T1 - Magnetoelectric Response of Laminated Cantilevers Comprising a Magnetoactive Elastomer and a Piezoelectric Polymer, in Pulsed Uniform Magnetic Fields T2 - Sensors N2 - The voltage response to pulsed uniform magnetic fields and the accompanying bending deformations of laminated cantilever structures are investigated experimentally in detail. The structures comprise a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer multilayer. The magnetic field is applied vertically and the laminated structures are customarily fixed in the horizontal plane or, alternatively, slightly tilted upwards or downwards. Six different MAE compositions incorporating three concentrations of carbonyl iron particles (70 wt%, 75 wt% and 80 wt%) and two elastomer matrices of different stiffness are used. The dependences of the generated voltage and the cantilever's deflection on the composition of the MAE layer and its thickness are obtained. The appearance of the voltage between the electrodes of a piezoelectric material upon application of a magnetic field is considered as a manifestation of the direct magnetoelectric (ME) effect in a composite laminated structure. The ME voltage response increases with the increasing total quantity of the soft-magnetic filler in the MAE layer. The relationship between the generated voltage and the cantilever's deflection is established. The highest observed peak voltage around 5.5 V is about 8.5-fold higher than previously reported values. The quasi-static ME voltage coefficient for this type of ME heterostructures is about 50 V/A in the magnetic field of approximate to 100 kA/m, obtained for the first time. The results could be useful for the development of magnetic field sensors and energy harvesting devices relying on these novel polymer composites. KW - cantilever KW - composites KW - DEMAGNETIZING FACTORS KW - direct magnetoelectric effect KW - laminated structure KW - magnetic field sensor KW - magnetoactive elastomer KW - piezoelectric polymer Y1 - 2021 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/2558 N1 - Corresponding authors: Gašper Glavan, Mikhail Shamonin VL - 21 IS - 19 SP - 1 EP - 19 PB - MDPI CY - Basel ER -