TY - CONF A1 - Rill, Georg A1 - Arrieta Castro, Abel A2 - Klomp, Matthijs A2 - Bruzelius, Fredrik A2 - Nielsen, Jens A2 - Hillemyr, Angela T1 - A Novel Approach for Parametrization of Suspension Kinematics T2 - Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2019), August 12-16, 2019, Gothenburg, Sweden N2 - n the automotive industry, simulations are needed to analyse the dynamics of vehicles and also of its main components and subsystems, e.g. tires, brakes and suspension systems. These simulations are required for an early-stage development and in consequence, they must deliver realistic results. Suspension systems plays a key role in comfort and safety of road vehicles. They usually consist of rigid links and force elements that are arranged with a specific topology. In addition, some of their functionalities are to carry the weight of the car and the passengers, and maintain a correct wheel alignment. In simulations involving suspension systems, lookup-tables are frequently used. They are obtained from a Kinematic and Compliance (KnC) test and then standardized for a specific vehicle simulation software. Nonetheless, lookup-tables require a reasonable number of characteristic points. Additionally, derivatives, interpolation, and extrapolation are not necessarily smooth. This produces results that depend on the interpolation technique and may be inaccurate. In this paper, a novel method called “design kinematics” is proposed. This method can describe the kinematic properties of almost any type of suspension systems. Comparisons with an analytic calculation and a KnC measurement shown that the design kinematics is able to represent the kinematic and compliance properties of suspension systems extremely well and very efficiently. KW - design Kinematics KW - Kinematic and compliance test KW - Suspension systems Y1 - 2020 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/2775 SN - 978-3-030-38076-2 SP - 1848 EP - 1857 PB - Springer International Publishing CY - Cham ER -