TY - JOUR A1 - Bodnaruk, A1 - Andrii V., A1 - Brunhuber, Alexander A1 - Kalita, Viktor M. A1 - Kulyk, Mykola M. A1 - Kurzweil, Peter A1 - Snarskii, Andrei A. A1 - Lozenko, Albert F. A1 - Ryabchenko, Sergey M. A1 - Shamonin (Chamonine), Mikhail T1 - Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity T2 - Polymer N2 - Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators. KW - Experimental methodology KW - Internal deformation KW - magnetic properties KW - magnetoactive elastomer KW - Magnetomechanical coupling KW - magnetorheological elastomer Y1 - 2019 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/2535 VL - 162 IS - January SP - 63 EP - 72 PB - Elsevier ER -