TY - JOUR A1 - Fetisov, Yuri K. A1 - Chashin, Dmitri V. A1 - Saveliev, Dmitri A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - Anisotropic Magnetoelectric Effect in a Planar Heterostructure Comprising Piezoelectric Ceramics and Magnetostrictive Fibrous Composite T2 - Materials N2 - The direct magnetoelectric (ME) effect is investigated in a planar structure comprising mechanically coupled layers of a magnetostrictive fibrous composite (MFC) and a piezoelectric ceramics (lead zirconate titanate, PZT). The MFC is an array of Ni-wires with a diameter of 200 mu m that are aligned parallel to each other in a single layer. The wires are separated by a distance of 250 or 500 mu m and fixed in a polyamide matrix. The structure was placed in a tangential constant field H and was excited by an alternating magnetic field h parallel to H, while the voltage generated by the PZT layer was measured. The resulting field dependences of the magnetization M(H) and the magnetostriction lambda(H) were determined by the orientation of the field H in the plane of the structure and the distance between the Ni-wires. The ME coupling coefficient of the structure decreased from 4.8 to 0.25 V/A when the orientation of H was changed from parallel to perpendicular to Ni-wires. With an increase in the excitation field amplitude h, a nonlinear ME effect in the output voltage, namely frequency doubling, was observed. The frequency and field dependences of the efficiency of the ME transduction in the MFC-piezoelectric heterostructure are well described by the existing theory. KW - composite KW - frequency doubling KW - heterostructure KW - magnetoelectric effect KW - magnetostrictive fiber KW - piezoelectric ceramic material Y1 - 2019 UR - https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/2552 N1 - Corresponding authors: Yuri Fetisov, Mikhail Shamonin VL - 12 IS - 19 SP - 1 EP - 13 PB - MDPI CY - Basel ER -