Fakultät Angewandte Chemie
Refine
Document Type
- Article (17)
- conference proceeding (article) (2)
Has Fulltext
- no (19)
Reviewed
- Begutachtet/Reviewed (19) (remove)
Keywords
- CO2 activation Al doped Cu/ZnO charge carrier quantification Cu−ZnO interface rWGS activity (1)
- Cabon Fibers (1)
- Catalyst (1)
- Cement-based Composites (1)
- Leaching (1)
- Platinum (1)
- Recovery (1)
- Recyling (1)
- Silicone elastomer (1)
- Temperature measurement , Protons , Degradation ; Visualization ; Protocols , Microscopy ; Fuel cells (1)
This paper reports on the successful synthesis of visible light photoactive N–TiO2 nanolayers and the investigation of charge carrier dynamics in dependence on N-doping and irradiation wavelengths. Grazing incidence X-ray diffractometry exhibited that N-doping supports the formation of an anatase phase with a higher crystallinity than observed for undoped TiO2. Photoelectrochemical measurements gave evidence that N–TiO2 is characterized by a significantly higher incident photon conversion efficiency (IPCE) upon both UV and visible light irradiation. Photoelectrochemical impedance spectroscopy revealed that the higher IPCE of N–TiO2 in UV can be explained by a lowered charge transfer resistance, probably due to its higher crystallinity. The higher photoactivity in the visible can be explained by the incorporation of intrabandgap states upon N-doping. This is supported by X-ray photoelectron spectroscopy indicating the incorporation of N atoms in the titania layer, the observed bandgap narrowing by at least 250 meV as measured by ultraviolet–visible absorption spectroscopy, and the decrease of the work function by 50 meV, as derived from scanning Kelvin probe microscopy. Intensity-modulated photocurrent/photovoltage spectroscopy proved that the generally lower quantum yield at visible light is caused not only by the generation of less photoexcited charge carriers, but also by a higher surface hole recombination rate and hence lower hole charge transport efficiency.
Ethylene is a phytohormone that is responsible of fruit and vegetable ripening. TiO2 has been studied as a possible solution to slowing down unwanted ripening processes, due to its photocatalytic capacity which enables it to remove ethylene. Thus, the objective of this study was to develop nanocomposites based on two types of eco-friendly materials: Mater-Bi® (MB) and poly(lactic acid) (PLA) combined with nano-TiO2 for ethylene removal and to determine their ethylene-removal capacity. First, a physical–chemical characterization of nano-TiO2 of different particle sizes (15, 21, 40 and 100 nm) was done through structural and morphological analysis (DRX, FTIR and TEM). Then, its photocatalytic activity and the ethylene-removal capacity were determined, evaluating the effects of time and the type of light irradiation. With respect to the analysis of TiO2 nanoparticles, the whole samples had an anatase structure. According to the photocatalytic activity, nanoparticles of 21 nm showed the highest activity against ethylene (~73%). The results also showed significant differences in ethylene-removal activity when comparing particle size and type and radiation time. Thus, 21 nm nano-TiO2 was used to produce nanocomposites through the melt-extrusion process to simulate industrial processing conditions. With respect to the nanocomposites’ ethylene-removing properties, there were significant differences between TiO2 concentrations, with samples with 5% of active showed the highest activity (~57%). The results obtained are promising and new studies are needed to focus on changes in material format and the evaluation in ethylene-sensitive fruits.
According to the ASTM D97, the pour point is the temperature below which petroleum products cease to flow. To evaluate the relevance of pour point measurements for synthetic lubricating oils, we investigated the crystallization, melting temperature and low-temperature flow behavior of one mineral and five synthetic lubricating oils. The classification of three groups emerged from this process. The formation of paraffin crystals in mineral oils (I) below the crystallization temperature causes shear-thinning behavior and a yield point. The crystallization temperature determined in the thermal analysis and rheology correlates well with the pour point. Synthetic lubricating oils, which solidify glass-like (II), exhibit a steady viscosity increase with falling temperature. The temperature at which viscosity reaches 1000 Pas corresponds well to the pour point. Synthetic oils, especially esters, with complex crystallization behavior (III), exhibit supercooling depending on the shear rate and cooling conditions. For these lubricating oils, the pour point provides no information for low-temperature applicability.
Nutzung rheologischer Kennwerte zur Beurteilung der Schmierfetteignung bei tiefen Temperaturen
(2022)
AbstractDie Viskosität und die Fließgrenze von Schmierfetten wurde im Bereich von 20 °C bis –40 °C untersucht. Die Temperaturabhängigkeit beider Größen folgt einem Arrhenius‐Gesetz. Die Temperaturabhängigkeit der Viskosität der Grundöle wird durch eine WLF‐Gleichung beschrieben und ist deutlich stärker ausgeprägt. Die Eignung von Schmierfetten wird über die Zugehörigkeit zu einer NLGI‐Klasse beurteilt, die anhand der Eindringtiefe eines Kegels in das Fett bestimmt wird. Dies korreliert eindeutig mit der Fließgrenze und ermöglicht so die temperaturabhängige Zuordnung eines Fettes zu einer NLGI‐Klasse.
The structure and flow behavior of lubricating greases depend on the base oil and the type and concentration of the dissolved thickener. In this study, the linear viscoelastic properties of greases were characterized by combining oscillatory shear and squeeze flow covering a broad frequency range (0.1–105 rad s−1). Multiple-particle tracking (MPT) microrheology and scanning electron microscopy (SEM) provided further insight into local viscoelastic properties and sample structure on a submicron-length scale. The type and viscosity of the base oil did not affect the absolute value of the complex viscosity and the filament shape formed by a given thickener. High-frequency shear modulus data, however, indicated that the thickener lithium 12-hydroxystearate formed stiffer networks/filaments in poly-α-olefins than in mineral oils. As expected, the viscosity increased with increased thickener concentrations, but microscopy and high-frequency rheometry revealed that the thickness, length, and stiffness of the individual filaments did not change. In mineral oil, the 12-hydroxystearate thickeners yielded higher viscosity than the corresponding stearates with the same metal ion. The filamentous lithium thickeners created stronger networks than the roundish aggregates formed by magnesium and zinc stearate. Network mesh sizes varying between approximately 100 nm and 300 nm were consistently determined from SEM image analysis and MPT experiments. The MPT experiments further disclosed the existence of gel-like precursors of approximately 130 µm at thickener concentrations far below the critical value at which a sample-spanning network resulting in a characteristic grease texture is formed.
This study investigates crystallization, melting and glass transition of Li- and Ca-12-hydroxystearate greases in relation to the pour point of the corresponding oils. The base oils for the greases are mineral oil, polyalphaolefin, alkylated naphthalene, propylene glycol, and trimellitate. For the mineral oil-based greases the crystallization temperature Tc increases and the melting temperature Tm decreases upon addition of thickener. The pour point of the mineral oil then is 3 K below Tc and does not properly define the lowest application temperature for mineral oil (MO) based greases. Both thickeners induce a small increase of the glass transition temperature (1–3 K) of the synthetic oils polyalphaolefin, alkylated naphthalene, propylene glycol. The pour point of the base oils correlates well with the onset of the glass transition in the corresponding grease indicated by a sharp increase in grease viscosity. Pure trimellitate with unbranched alkyl chains does not crystallize upon cooling but shows noticeable supercooling and cold crystallization. As the percentage of thickener in corresponding greases increases, more oil crystallizes upon cooling 20 K above the crystallization temperature of the trimellitate without thickener (−44 °C). Here, the thickener changes the crystallization behavior from homogeneous to heterogeneous and thus acts as a crystallization nucleus. The pour point of the base oil does not provide information on the temperature below which the greases stiffen significantly due to crystallization.
Lubricating greases enclose oil in porous structures of aggregated thickener particles. Their tendency to separate oil under static conditions is evaluated according to DIN 51817 or DIN ISO 22285 in tests of up to 168 h with the mass fraction of separated oil as result. With an analytical photo-centrifuge, separated oil mass fractions can be tracked in real time in the instrument operating temperature range from 4–60 °C. Due to the higher mechanical load compared to standard tests, the grease samples separate more and faster oil, significantly speeding up the analysis process. Fitting the measured data from both methods with the function wO = wO,∞ exp(−t/tc), the parameters maximum oil separation wO,∞ and characteristic time tc are obtained as measures of oil separation extent and rate. Both parameters help to compare the two methods and to interpret the oil separation characteristics of greases. Using four commercial greases of NLGI classes 0–2, the analytical photo-centrifuge measuring method is presented in detail and its results are discussed in reference to those of standard DIN 51817.
AbstractThe application of hydrogen proton exchange membrane fuel cells (PEMFC) in greenhouse gas emission free heavy-duty vehicles requires extremely durable PEMFC components with service lives in the range of 30,000 h. Hence suitable test and analysis methods are required that reflect realistic operation scenarios, but significantly accelerate aging. For this purpose, a dynamic accelerated stress test was developed, which is coupled with a comprehensive in-depth in-situ and ex-situ analysis program to determine the aging processes of a PEMFC membrane electrode assembly (MEA). The test comprehends dynamic cycling between low, moderate and high load, different temperature and humidity conditions as well as recovery sequences to distinguish between reversible and irreversible failure modes. All phases of the PEMFC system (i.e. solid, liquid and gaseous) are monitored on-line during aging by sophisticated electrochemical, mass spectrometric and ion chromatographic analytical methods. The structural and elemental composition of the MEA before and after the aging program (post-mortem) are investigated by X-ray fluorescence, scanning and transmission electron microscopy. This program was able to age a commercial PEMFC to end-of-life in 1000 h, while providing an accurate picture of the aging processes involved.
Addition curing systems involve two-part silicones which require the mixture of a silicone polymer with a catalyst to initiate the cure. Platinum is the most commonly used metal catalyst for addition curing of silicones by hydrosilylation which involves the crosslinking by the addition reaction of silicon hydride species to unsaturated bonds, mainly C=C, but also C=O or C=N double bonds. After crosslinking of the polymers, the platinum catalyst cannot be recovered but remains in the silicone materials throughout the entire product life. In the end, platinum is disposed of together with the silicones and is thus lost to the value chain. The overall objective of this work was to develop a recycling process for the recovery of platinum from addition-cured silicone elastomers. In the first step, this was achieved by efficient digestion methods and by optimizing the leaching processes for exemplary commercial silicone elastomer products. Two different silicone materials were investigated, both of which were crosslinked with a platinum catalyst. The initial Pt content in the tested samples was 12.6 ± 0.2 mg/kg for a commercial silicone impression material and 6.3 ± 0.5 mg/kg for a silicone baking mold, measured by graphite furnace atomic absorption spectrometry (GF-AAS). Samples were first frozen with liquid nitrogen to improve brittleness and then crushed with a simple food processor to obtain a silicone granule. Various acid mixtures, mainly based on sulfuric acid, were investigated as digestion methods in order to extract platinum from the silicone network. These had different effects on the dissolution behavior of silicone samples and the amount of platinum extracted in each case. The amount of platinum leached from the filtrate of the digested samples in each case was measured by ICP-OES to evaluate the efficiency of different leaching mixtures. In addition, the dissolved platinum species present in the solutions was identified by UV/VIS as tetrachloridoplatinate(II) complex. The best platinum leaching results so far were obtained with two methods, both of which used a leaching mixture based on sulfuric acid and hexamethyldisiloxane (M2). In the presence of hydrochloric acid, 9.6 ± 1.6 mg platinum/kg was leached from the silicone impression material and 4.2 ± 0.8 mg platinum/kg from the silicone baking mold. With the additional use of aqua regia instead of hydrochloric acid, 10.4 ± 2.8 mg platinum/kg was extracted from the silicone impression material and 4.8 ± 1.0 mg platinum/kg was extracted from the silicone baking mold. These methods were replicated with n = 3. Using statistical evaluation methods (F-test, t-test, and confidence interval), no significant difference was found between these two best methods. Recovery of platinum(0) from leach mixtures has not yet been achieved due to high dilution and very low platinum concentration in samples and will be part of another study.
The limited lifetime and severe degradation after long-term usage of polymer electrolyte membrane fuel cells (PEMFCs) are challenges that have to be overcome, if PEMFCs are to play the anticipated major role in a sustainable energy and transportation system based on green hydrogen. Therefore, analytical scanning methods to precisely characterize and understand the degradation and ageing mechanisms with high spatial resolution are essential. We are using and validating scanning electrochemical microscopy (SECM) as tool for detecting descriptors of the electrochemical performance of PEMFCs treated under different activation and ageing protocols. For this purpose, a pristine Nafion™ membrane, which is typically used as proton exchange membrane (PEM) in low temperature fuel cells, was activated and deactivated after well-defined protocols to demonstrate the fundamental suitability of SECM for investigating PEMFC components. Our results indicate that the impedance associated with the proton conductivity of the Nafion™ membrane as measured by SECM was dependent on the pretreatment of the membrane and increased in the following order: hot water < hydrochloric acid < sulfuric acid. The partial and complete deactivation of the membrane using Fenton’s reagent and barium hydroxide, respectively, could be spatially visualized with SECM as well. In addition, we investigated a PEM as part of a complete membrane electrode assembly in a fully functional PEMFC after accelerated ageing tests and could identify an increased local PEM impedance by SECM. All trends could be confirmed by electrochemical impedance spectroscopy (EIS). Moreover, we investigated a typical gas diffusion layer (GDL) of a PEMFC with SECM. As a result, the microporous side of the GDL showed a much lower impedance than its macroporous side, which is comprehensible since it agrees with the additional carbon black coating on the former side.