Map of the algorithm „Self-organization of Vectors“

This is a map \(\tau \) from \((\mathbb{R}^n)^k \rightarrow (\mathbb{R}^n)^k \). Vectors are coupled by the dot product \(r \cdot dr \).

The smallest unit of the algorithm is a pair of points with the transformation \(\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \times \mathbb{R}^n \).

Given vectors: \(r_1, r_2, r_{12}, dr_{12} \in \mathbb{R}^n \) with \(r_{12} = r_2 - r_1 \); \(|dr_{12}| = 1 \).

The map \(\tau \) depends on two scalars \(e \) and \(s \) with \(e \geq s \).

First calculation of next \(dr_{12} \).

For \(|r_{12}| \leq e \) then \(dr_{12} = \text{constant} \).

For \(|r_{12}| > e \) then \(r_{12} \wedge dr_{12} = s \) and \(r_{12} \cdot dr_{12} > 0 \).

Then calculation of the new positions of the two points

\(\tau(r_1) = r_1 + dr_{12} \), \(\tau(r_2) = r_2 - dr_{12} \).

The map \(\tau \) extends to a map \((\mathbb{R}^n)^k \rightarrow (\mathbb{R}^n)^k \), defined for a list of \(k \) points, via a principle of superposition.

Given vectors: \(r_1, r_2, \ldots, r_k, dr_{ab} \in \mathbb{R}^n \) with \(r_{ab} = r_b - r_a \); \(|dr_{ab}| = 1 \), where \(\{ab\} \) are the chosen pairs of points.

First calculation of all next \(dr_{ab} \).

For \(|r_{ab}| \leq e \) then \(dr_{ab} = \text{constant} \).

For \(|r_{ab}| > e \) then \(r_{ab} \wedge dr_{ab} = s \) and \(r_{ab} \cdot dr_{ab} > 0 \).

Then calculation of the new positions of all points by superposition

\(\tau(r_i) = r_i + \sum dr_{[ij]} \) with \(dr_{[ij]} = -dr_{[ji]} \) where \(i = 1, 2, \ldots k \).

I’d like to thank Richard E. Schwartz for helpful discussions related to this work.