
SYS
INSTITUT FÜR LEISTUNGSELEKTRONISCHE SYSTEME

3~

3~

www.th-nuernberg.de/elsys

Inference andTraining ofa Multilayer
Perceptron in a DeepReinforcement

Learning Context on a FPGA

Thilo Wendt

Nuremberg Institute of Technology

Electrical Engineering , Precision Engineering and

Information Technology

Master of Science
Applied Research in Engineering Sciences

Master’s Thesis of
Thilo Wendt

Inference and Training of a
Multilayer Perceptron in a

Deep Reinforcement Learning Context
on a FPGA

Summer Term 2022
Date of Submission: Mai 09, 2022

Supervisor
Prof. Dr. Armin Dietz M. Sc. Tobias Schindler

Institute ELSYS

Keywords: FPGA, Artificial Neural Network, Batch Gradient Descent, High Level Synthesis

Family name: Given name: Student ID number:

DokID: SB_0053_FO_Erklärung_zur_Veröffentlichung_der_Abschlussarbeit_prüfungsrechtliche Erklärung_EN_public Vers. 1, 28.04.2022, A. Härtel/A. Braun (4.SB)
1/1

I hereby authorize, if and insofar as no conflicting agreements with third
parties exist,

do not authorize

that the above-named thesis may be made publicly accessible by the Technische Hochschule Nürnberg Georg Simon Ohm; if
applicable, if indicated by an embargo annotation on the thesis, this will occur after the expiry of any publication embargo of

If authorization is granted, it is irrevocable; the thesis submission includes a pdf formatted version on a data storage medium for
this purpose. Provisions in the respectively applicable Study and Examination Regulations about the type and scope of copies
and materials that must be submitted as part of the thesis shall not be affected by the submission of the pdf format for
publication.

years (0 - 5 years after the date the thesis was submitted).

Title of the final thesis:

Personal information of the student:

The decision to wholly or partially publish the thesis is, on principle, first and foremost the sole responsibility of the student
author. According to the Copyright Act (UrhG), when a student produces a thesis, the author of the thesis acquires sole
copyright and, in principle, also the resulting rights of use, such as first publication (§ 12 UrhG), distribution (§ 17 UrhG),
reproduction (§ 16 UrhG), online use, etc., i.e., all rights pertaining to non-commercial or commercial exploitation.

The university and its employees will not publish theses or parts thereof without the agreement of the student author, in
particular, it will not be placed in the publicly accessible section of the university library.

City, Date, Signature of the student

Notice: This declaration must be securely bound in all copies of the
final thesis. (No spiral binding)

I hereby declare that this work is my own and has not been submitted for examination purposes in any other context. I have

indicated and acknowledged all sources, aids, and quotations used in its production.

City, Date, Signature of the student

 Declaration by the student in accord with examination rules and regulations

 Declaration regarding the publication of the thesis named above

Semester:

Data protection: The personal data you provide during your application is stored and processed by the Technische Hochschule Nürnberg Georg Simon Ohm.
Further information on how the Technische Hochschule Nürnberg handles your personal data can be found at: https://www.th-nuernberg.de/datenschutz/

Degree programme:Faculty:

Wendt Thilo 2921949

Inference and Training of a Multilayer Perceptron in a Deep Reinforcement Learning Context on a FPGA

Print form

2022Sommersemester

Applied Research in Engineering SciencesElectrical Eng., Precision Eng., Information Technology

Nuremberg, 05-09-2022

Nuremberg, 05-09-2022

Abstract

This thesis addresses the design and verification of a multilayer perceptron (MLP) and the cor-
responding optimization algorithm, the batch gradient descent (BGD), on a FPGA using high
level synthesis (HLS) for Xilinx devices. The solutions developed in this project are used in a
reinforcement learning environment for the control of power electronic systems. The thesis briefly
presents the principle of reinforcement learning, a mathematical description of the MLP and the
BGD as well as programming techniques for HLS. The structure of the solutions and performance
examinations are presented in the results part of the thesis. The project delivers functionally veri-
fied solutions for the execution on a FPGA. The solutions are able to process a three layer MLP
with 16 inputs and outputs and 128 neurons in the hidden layer in 2,361 clock cycles at 100 MHz
clock frequency which results in a runtime of 23.6 µs. The corresponding BGD for one training
example features a minimum runtime of 13,141 clock cycles or 1,314 µs. However, performance
is expected to further improve after resolving several issues described in the thesis.

Thilo Wendt Institut ELSYS iii

Table of Contents

Abstract iii

Nomenclature vi

1 Introduction 1
1.1 Related Work . 2
1.2 Project Structure . 3

2 Theory 4
2.1 Reinforcement Learning . 4
2.2 Multilayer Perceptrons . 6
2.3 Batch Gradient Descent . 8
2.4 The XOR Problem . 11
2.5 Programming for Vitis High Level Synthesis . 13

2.5.1 Vitis HLS Workflow . 13
2.5.2 Definition of the IP-Core in HLS . 14
2.5.3 Optimization for FPGA . 16

3 Results 21
3.1 Implementation Constraints . 21
3.2 Implementation of the MLP . 22
3.3 Implementation of the BGD . 24
3.4 Combination of the BGD and the MLP . 26
3.5 Shortcomings . 28
3.6 Functional Verification . 30
3.7 Performance Examination . 32

3.7.1 Examination of Networks with ReLU Activation 33
3.7.2 Examination of Networks with Sigmoid Activation 35
3.7.3 Additional Latencies . 36

3.8 Summary and Interpretation . 37

4 Summary and Outlook 38

List of Figures 39

List of Tables 40

Thilo Wendt Institut ELSYS iv

Table of Contents

List of Listings 41

Bibliography 42

Appendices 44

A HLS Project Structure 44

B Integration in the Vivado Block Design 45

C Development Environment 47

D Directory Structure of the Archive 48

Thilo Wendt Institut ELSYS v

Nomenclature

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

AXI Advanced eXtensible Interface

BGD Batch Gradient Descent

BLAS Basic Linear Algebra Subprograms

BRAM Block RAM

CNN Convolutional Neural Network

DDR Double Data Rate RAM

DMA Direct Memory Access

DPU Deep Learning Processing Unit

DQN Deep Q-Network

FIFO First-In-First-Out (Buffer)

FPGA Field Programmable Gate Array

GD Gradient Descent

GPIO General Purpose IO

GPU Graphic Processing Unit

HDL Hardware Description Language

HLS High Level Synthesis

II Initiation Interval

ILA Integrated Logic Analyzer

IO Input Output

IP Intellectual Property

LUT Look-Up Table

MLP Multilayer Perceptron

PES Power Electronic System

PIPO Ping-Pong (Buffer)

RAM Random Access Memory

ReLU Linear Rectifier

Thilo Wendt Institut ELSYS vi

Nomenclature

RL Reinforcement Learning

RTL Register Transfer Level

SoC System-on-a-Chip

TLF Top Level Function

VHDL Very High Speed Integrated Circuit HDL

Symbols for MLP and BGD

δl Vector that holds the error of the layer l

δl
j Error of the neuron j in the layer l

η Learning rate

σl(z) Activation function of the layer l

aL Output vector of the MLP

al Vector that holds the output values of the layer l

al
j Output value of the neuron j in the layer l

b All bias vectors in the network

bl Vector that holds the biases of the layer l

bl
j Bias of the neuron j in the layer l

C Cost function over the complete dataset

Cx Contribution of one example to the cost function

L Number of layers in the network

M Number of examples in the training batch X

m Index of the of the example in the batch X

N Total number of examples in a dataset

n Index of the of the example in the complete dataset

W All weight matrices in the network

W l Weights between the the layers l − 1 and l

W l
j,i Weight between the neuron al−1

i and al
j

X Batch of training examples

xn Input vector that holds the values of the example n

y(x) Vector that holds the desired output of the MLP for the input x

zl
j Input value of σl in the neuron al

j

Thilo Wendt Institut ELSYS vii

Nomenclature

Symbols in Reinforcement Learning

A Action space of the agent

S State space of the environment

π Policy from which A is derived

π∗ Optimal policy to maximize the value

A Action of the agent

Q(S, A) Approximation of q(S, A)

q(S, A) Value of the action A taken in the state S a.k.a. action-value function

R Reward of the environment given to the agent

S State of the environment

v Accumulated reward a.k.a. value

v(S) Value of a state

Thilo Wendt Institut ELSYS viii

1 Introduction

Artificial intelligence (AI) algorithms are currently widely used to solve a broad range of problems
in the field of power electronic systems (PES). AI can be applied in different phases of the product
life-cycle including design, control and maintenance [1, p. 4633]. Within the scope of this project,
the inference and the training of an artificial neural network (ANN) in a reinforcement learning
(RL) approach for the control of a PES are investigated. In this context, the inference of the ANN
is the computation with given operation parameters, while the training is referred to as the
determination of optimal parameters for the application. The control algorithm is implemented
on a field programmable gate array (FPGA) based rapid prototyping platform which provides
the computational resources required to meet the hard real-time conditions, for which the target
system demands [2].
The implementation on an embedded system with hard real-time requirements distinguishes the
application from classic AI domains like computer vision, audio processing or big data analysis
[3, p. 9]. Usually, these tasks run in unconstrained environments (e.g. in cloud environments
backed by data centers) without fulfilling real-time requirements in the range of microseconds.
In embedded system environments, a higher level of optimization concerning the design of the
algorithm as well as the implementation on hardware is required. However, the application of
AI in power electronics seems promising in situations where traditional control approaches fail
in the consideration of non-linear effects [4, p. 27]. The consideration of non-linear effects in PES
leads to optimized control algorithms which increase the efficiency of the system. Especially in
space or weight constraint environments it is vital to operate the system close to the physical
limits [5, p. 1].
The project is based on the outcomes presented in [2]. The paper describes the inference of
multilayer perceptrons (MLP) on a FPGA. The application for the MLP is the approximation of
the Q-Function in a RL environment which is further described in section 2.1. The author of the
paper utilized the Matlab HDL Coder to generate a hardware description from a Simulink model
which is suitable for the execution on a FPGA. While the implementation details of the different
MLPs have been investigated extensively, the paper does not describe the training phase in an
embedded environment. Furthermore, a verification of the generated hardware description has
not been performed.
As a first step, the results from [2] are reproduced using the high level synthesis (HLS) tool from
Xilinx. In contrast to the Simulink based approach, HLS allows the behavioral description in C++,
which is then implemented in a hardware description language (HDL) like VHDL. The outcome
can be manipulated for different design goals such as execution time, resource or power efficiency
[6, p. 17]. Furthermore, the high level description of the algorithm is used to create a test bench
to verify the behavior of the generated hardware description. The creation of the test bench is
mainly covered by HLS. In contrast to a manual implementation in VHDL, this approach takes
advantage of the implicit solution of HLS without the demand for extensive knowledge about
hardware verification.

Thilo Wendt Institut ELSYS 1

1 Introduction

As a second step, the training of the MLP using HLS is investigated. The implementation focuses
the maximum achievable execution speed on the considered FPGA. For this purpose, a high level
description in C++ of the training algorithm is created which is suitable for the post processing
by HLS. The training of the MLP is carried out with batch gradient descent (BGD).
The target platform is the UltraZohm which is a system specifically designed for the rapid proto-
typing of new control algorithms in the domain of PES. It is based on a Xilinx Zynq UltraScale+
SoC FPGA. For the application in PES, an ecosystem of interface boards for the acquisition of
actual values and the output of switching signals to an inverter is available [7]. The outcome of
the thesis is a contribution to the UltraZohm project, which is licensed under the open source
Apache 2 license.

1.1 Related Work

The inference of neural networks on an embedded system is feasible nowadays due to the in-
creased performance of the platforms. While implementations on graphic processing units (GPU)
have been popular in the past, further optimizations in terms of power efficiency and throughput
are currently examined. Xilinx offers deep learning processing units (DPU) specifically designed
for the inference of convolutional neural networks (CNN) on various FPGA-based platforms. The
solution operates with well-known frameworks like Caffe or TensorFlow [8]. While this solution
seems promising for sophisticated problems that are subject to offline optimized CNNs, the com-
bination with online training appears to be infeasible within the scope of this thesis. A lower
level of complexity is offered by tools like HLS4ML that do not rely on a DPU. The tool infers a
HLS description from common open source machine learning package models [9] and it has been
successfully applied to an image processing problem in [10]. Adaptions of HLS4ML officially
supported by Xilinx exist [11]. The potential of HLS4ML concerning real-time capabilities has
been proven in [10] but a model of the ANN from one of the aforementioned AI frameworks
is required. The vast majority of all solutions target the inference of CNNs on FPGAs which is
suitable for complex tasks like image processing. In contrast, the ANNs described in [2] are much
simpler and can be described in C++ effortlessly. While the usage of tools like HLS4ML is useful
for complex ML applications with offline training, it just adds another layer of complexity to the
problem investigated in this thesis.
In addition, very few research has been done on the online training of a MLP as it is required
in a RL application. The training method used in this project is BGD. This algorithm has been
directly implemented in HDL in [12], [13] and [14] but due to the high verification effort that
comes with the realization in HDL, these solutions are not considered for the current project. In
fact, a solution similar to [15] and [16], which take advantage of the implicit verification support
of HLS, is desired. In both papers the algorithm is well described but no repository with the
implementation is publicly available. Thus, the publications as well as the structures generated
by HLS4ML are used as a starting point for the current project but they do not offer a solution.

Thilo Wendt Institut ELSYS 2

1 Introduction

1.2 Project Structure

The thesis is subdivided into two main work packages. As a first step, the inference of a MLP on
a FPGA with HLS is examined. The theoretical basis for the implementation is given in section
2.2, while the implementation with HLS is explained in section 3.2. The outcome of the first work
package forms the basis for the implementation of the BGD which is carried out in the second
work package. The equations for the BGD implemented in section 3.3 are explained in section
2.3. [15] and [16] are considered for the second work package but these projects do not deliver
a solution. The implementation of the MLP and the BGD follow the optimization guidelines
presented in section 2.5.
The functional verification of the MLP and the BGD is presented in section 3.6. Consequently,
performance benchmarking is presented in section 3.7. Final considerations are given in chapter 4.

Within the scope of this project, the following aspects have been investigated: [2] proposes the
usage of the hard wired processor, which is available on the control platform. While the current
project does not focus on the investigation of this approach, it is estimated if the solution designed
with HLS is suitable for the execution on a general purpose processor without major code changes.
The following research questions have been identified:

1. Which architecture for the implementation of a MLP in HLS leads to high performance
while maintaining a reasonable resource footprint?

2. Is the implementation of the BGD algorithm feasible with HLS?

3. Which minimal execution time of a training run can be reached with the given hardware
platform disregarding the usage of FPGA resources?

4. Are the HLS implementations suitable for execution on a processor without major code
changes?

Thilo Wendt Institut ELSYS 3

2 Theory

The following chapter presents the theoretical basis of the implementations described in chapter 3.
This chapter introduces RL and embeds the role of the ANN in the context. A mathematical
overview of MLPs and the corresponding BGD is given in section 2.2 and 2.3. Finally, section 2.5
presents the programming techniques for HLS applied in this project.

2.1 Reinforcement Learning

The ANN implemented in the current project is applied to a RL approach to control PES. In the
following section, the context is explained, in which the ANN is used. The formal description
follows the notation introduced in [17]. Fig. 2.1 shows the composition of the components in RL
which are introduced in the following paragraphs.

54 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St ∈ S, where S is the set of
possible states, and on that basis selects an action, At ∈ A(St), where A(St)
is the set of actions available in state St. One time step later, in part as
a consequence of its action, the agent receives a numerical reward , Rt+1 ∈
R ⊂ R, and finds itself in a new state, St+1.

3 Figure 3.1 diagrams the agent–
environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted πt, where πt(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many different
problems in many different ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined
by low-level sensations, such as direct sensor readings, or they can be more

wider audience.
2We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and
Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that
the next reward and next state, Rt+1 and St+1, are jointly determined.

Figure 2.1: Overview of the components in RL from [17, p. 54]. The agent influences the envi-
ronment by taking an action A. As a consequence, the environment transitions to the
state S and feeds back a reward R to the agent.

Environment The environment in RL is the system which is scope to the control task [17, p. 53].
In the context of PES, the environment may be an electric power train composed of an inverter
and a drive [18]. The designer of the RL selects a quantity available in the environment which
defines the reward R to be fed back to the agent. The agent can be provided with a model of the
environment in advance, which is considered as a model based method, or it infers the model
during the learning process (model-free method) [17, p. 9].

State The state S describes the constitution of the environment, to which the agent has read ac-
cess. In the concrete example of [18] the state of the environment is described by the compensation
current and the rotor angle of the drive.

Agent The agent is the learner and the decision maker. It interacts with the environment by
taking actions A and by sensing the feedback. In a PES context, the agent is the control unit that
drives the inverter. The agent can take actions from a constraint action space. A is based on a

Thilo Wendt Institut ELSYS 4

2 Theory

policy π which is a mapping of actions to states. Thus, π defines the probability of the agent to
take an action in a specific state. Deterministic policies can be described as a function or a look-up
table (LUT) but in general, polices are stochastic [17, p. 7]. The policy is optimized based on the
reward the agent experiences after taking an action, which influences the environment [17, p. 53].
After the execution of A, the environment transitions to another state and the reward is fed back
to the agent. The goal of the agent is the maximization of the reward [17, p. 7].

Reward The reward R is the feedback formed by the environment and it is represented as a
single numeric value. It is the direct consequence of the action taken by the agent in a specific
state of the environment and it defines the goal of the optimization [17, p. 7]. For instance, in
[18] the reward is defined as the root mean square of the speed error signal of the drive, which is
scope to the optimization performed in the investigation.

Value While the reward represents the direct feedback from the environment, the value is the
expected accumulated amount of reward starting from a specific state and thereafter following
the policy π. Thus, it assesses the behavior of the agent in the long run. The value is expressed
depending on the starting state S by the value function v(S). In order to solve the optimization
problem which is scope to the RL, a common method is the value estimation of the states and
the consequent reward maximization by operating the environment in the states with the highest
value. This is considerably more effortful than the reward optimization since the value of a state
is determined over several iterations, whereas the reward for an action can be derived from the
model directly [17, p. 8].
The value of a state is expressed by the value function vπ(S). It outputs the value of a state
under the condition that the agent follows the policy π. While vπ(S) maps a value to a state, the
function qπ(S, A) represents the value of taking the action A in a given state S and thereafter
following the policy π. It is referred to as the action-value function for the policy π [17, p. 70]. If it is
not possible to describe these functions analytically, a suitable solution for finite problems with a
small state space S and action space A is the definition with LUTs [17, p. 10-15]. Larger values for
S and A result in a LUT size that is not manageable in a real-world application [2]. Instead, the
action-value function is approximated. In deep reinforcement learning applications, the resulting
function Q(S, A) is described by a neural network which takes the state of the environment as an
input and outputs the Q-value for all available actions in the current state. The agent can follow
the policy π by choosing the action with the highest Q-value. The ANN that approximates q(S, A)
to Q(S, A) is referred to as a Deep Q-Network (DQN). The DQN is altered depending on the
reward the agent experiences from the environment during the training phase. With a sufficiently
high number of training runs, the policy that is derived from Q(S, A) converges to the optimal
policy π∗ [17, p. 13]. Within the scope of this project, the feasibility of online optimization of the
DQN during operation is examined offering the possibility to react to a changing environment.

Thilo Wendt Institut ELSYS 5

2 Theory

2.2 Multilayer Perceptrons

In a general case, the ANN explained in section 2.1 can have an arbitrary architecture, which
is well suited to implement Q(s, a). Since the implementation presented in the current report
needs to fulfill real-time requirements a simple architecture with low latency on the control
platform is desirable. The simplest architecture of an ANN is the MLP. The following section
describes the structure of a MLP, the corresponding terminology and a matrix based notation for
the computation of a MLP.
Fig. 2.2 shows a common representation of a MLP. It consists of an arbitrary number of layers L,
an input layer a1 and an output layer aL. The layers between the input and the output are known
as hidden layers. Each layer contains an arbitrary number of neurons which are stored in the
vector al . The output of a neuron al

j is computed as follows [19]:

1. Summation of the output of the neurons of the previous layer al−1
i multiplied with the

corresponding weight W l
j,i.

2. Addition of a bias to the weighted sum from step 1. This intermediate quantity is identified
by the symbol z.

3. Application of the activation function σ to z. The output of the activation function is the
output of neuron a.

a10

a11

a12

a13

a14

a22

a21

a20

a23

a24

a25

a26

a27

a28

...

a263

a30

a31

a32

a33

a34

a35

a36

a37

a38

...

a363

a40

a41

a42

a43

a44

a45

a46

a47

a48

...

a463

a50

a51

a52

a53

a54

a55

a56

a57

x0

x1

x2

x3

x4

a50

a51

a52

a53

a54

a55

a56

a57

∑
σl(z)

bl0

...

al−1
0

al−1
i

al0zl0

W l
0,0

W l
0,i

Figure 2.2: Graphic illustration of a MLP. All neurons of a layer are linked to the next layer with
weighted connections (left), which results in a weighted sum followed by the activation
function of the layer σl (right). The figures are based on illustrations from [2].

Thilo Wendt Institut ELSYS 6

2 Theory

The parameters of a MLP can be summarized in a matrix representation allowing the description
of the computation in a compact equation. Equation (2.1) describes the computation of z for a
single neuron as the dot product between the row j of W l and the addition of the corresponding
bias value bl

j.

zl
j = bl

j + ∑
i

Wj,i · al−1
i = W l

j · al−1 + bl
j (2.1)

This approach is applied to the whole vector zl by computing the product of the vector al−1 and
the matrix W l and finally adding the vector bl :

zl = W lal−1 + bl (2.2)

The output vector of the layer al is obtained by applying the activation function σl to zl :

al = σl(zl) = σl(W lal−1 + bl) (2.3)

The representation from (2.3) is the basis for the implementation of the MLP. Within the scope of
this report, the following activation functions are considered:

σ(z) = sigmoid(z) =
1

1 + e−z =
ez

1 + ez (2.4)

σ(z) = ReLU(z) =

{
z, if z > 0
0, if z ≤ 0

(2.5)

σ(z) = z (2.6)

Thilo Wendt Institut ELSYS 7

2 Theory

2.3 Batch Gradient Descent

In the current project, the gradient descent (GD) algorithm is the method to optimize the param-
eters of the MLP. The following section contains a brief description of the GD algorithm which is
based on [19]. For a thorough introduction refer to this document.
In the literature, the algorithm is also known as backpropagation. Within the scope of this thesis, the
term backpropagation is avoided due to its fuzzy meaning. The term only denotes that something
is propagated backwards through an ANN while leaving the applied methods undefined. On the
other hand, the term batch gradient descent distinctively defines the applied measures: First, the
gradient of the cost function in regard to every parameter in the MLP is computed. Consequently,
it is used to reduce the value of the cost function which is described by the term descent. In order
to make this method applicable to large or infinite training datasets, it is applied to a batch of
training examples and not to the complete dataset.
The flowchart in Fig. 2.3 illustrates the optimization process which is applied in this project. At the
beginning of the optimization, the parameters are initialized randomly. During the optimization,
the parameters are altered by the BGD algorithm.

Init parameters
(random)

Execute MLP
on batch X

Execute BGD
on MLP results of X

C < Cmax? Done
true

false

Figure 2.3: Flowchart of the optimization process with BGD. The goal of the optimization is the
descent of the cost function C below a threshold Cmax. This is achieved by iterating
over the dataset with the MLP and altering the parameters with the BGD.

The goal of the optimization is the minimization of the cost function C. Within the scope of this
project, the cost function is the mean squared error of the output of the MLP. Equation (2.7) shows
the cost function for a complete dataset [19, eq. (26)].

C =
1

2N
·

N−1

∑
n=0

|y(xn)− aL(xn)|2 =
1
N

·
N−1

∑
n=0

Cx(xn) (2.7)

The cost function C depends on the desired output y and the actual output aL of the MLP for a
given training example xn. In (2.7), N denotes the total number of training examples available
in the dataset, while Cx is the contribution of a single training example to the value of the cost
function C.
In order to alter the parameters of the MLP, a value that quantifies the contribution of every
single weight and bias to the cost function in the network is required. This quantity is the partial
derivative of the cost function in regard to every weight and bias in the network ∂Cx/∂w and
∂Cx/∂b. The entity of all partial derivatives of the MLP is referred to as the gradient. Equation
(2.8) shows the update of the parameters of the MLP [19, eq. (20)] [19, eq. (21)]. Metaphorically
speaking, the gradient quantifies the positive contribution to the cost function. To minimize C,
the gradient is subtracted from the current parameters. This process is scaled by the learning rate
η.

Thilo Wendt Institut ELSYS 8

2 Theory

W → W ′ = W − η · 1
N

·
N−1

∑
n=0

∂Cx(xn)

∂W

b → b′ = b − η · 1
N

·
N−1

∑
n=0

∂Cx(xn)

∂b

(2.8)

Equation (2.8) depicts a major disadvantage of plain GD: Before updating the parameters, the
partial derivatives for all training samples in the dataset must be computed. In case of large datasets
or datasets with an unknown size, it is inconvenient to apply GD in this manner. Instead, GD is
applied to a selection of training samples from the complete dataset. This method is known as
batch gradient descent or stochastic batch gradient descent if the training samples are selected
randomly. Assuming a large enough batch size M, the partial derivatives of a training batch X
approximately equal the values for the complete dataset [19, eq. (18)]:

1
M

·
M−1

∑
m=0

∂Cx(xm)

∂W
≈ 1

N
·

N−1

∑
n=0

∂Cx(xn)

∂W

1
M

·
M−1

∑
m=0

∂Cx(xm)

∂b
≈ 1

N
·

N−1

∑
n=0

∂Cx(xn)

∂b

(2.9)

Consequently, ∂Cx/∂w and ∂Cx/∂b must be computed for each individual training sample in the
training batch X. As a first step, the intermediate quantity δl is defined [19, eq. (29)]:

δl
j =

∂Cx

∂zl
j
=

∂Cx

∂al
j
· σ′(zl

j) (2.10)

δl
j is known as the error of the neuron j in the layer l. It denotes, how much the output of a

neuron al
j contributes to the cost function. Equation (2.10) is valid for all layers in the MLP but

the quantity ∂Cx/∂al
j for the output layer is computed differently than for the hidden layers as

shown in (2.13) and (2.15)
It is convenient to define δl in regard to the input of the activation zl because the actual quantities
of interest ∂Cx/∂w and ∂Cx/∂b are directly derived from it without the occurrence of the activation
function σ. Metaphorically speaking, δl is computed by calculating the output error of a neuron
∂Cx/∂al

j and moving this value backwards through the activation function by multiplying it
with its derivative. For hidden layers, δl is computed by propagating δl+1 backwards through
the network. Consequently, an expression for the error of the output layer must be defined first.
Equation (2.10) demands for a partial derivative of Cx in regard to every element in the output
vector al . Equation (2.11) shows the relation between al and Cx, which has been extracted from
(2.7).

Cx =
1
2
· |y − aL|2 =

1
2
· ∑

j
(yj − aL

j)
2 (2.11)

Thilo Wendt Institut ELSYS 9

2 Theory

The partial derivative of (2.11) with respect to every element of the output vector aL
j is determined

with the chain rule:

∂Cx

∂aL
j
=

∂

∂aL
j

(
1
2
· ∑

j
(yj − aL

j)
2

)
= −1 · 2 · 1

2
· (yj − aL

j) = aL
j − yj (2.12)

Summarizing the results of (2.12) in the vector ∂Cx/∂aL directly leads to the expression for the
output error vector δL [19, eq. (30)]:

∂Cx

∂aL = aL − y

δL =
∂Cx

∂aL ⊙ σ′(zL) = (aL − y)⊙ σ′(zL)

(2.13)

The operator ⊙ simply denotes the elementwise multiplication of two vectors which is known as
the Hadamard Product. For the special case of a linear activation function σ(zL) = zL, the derivative
of it is equal to one. This special case applies to the output layers of all MLPs considered in this
project and δL is further simplified to (2.14):

δL = aL − y (2.14)

Based on δL, the error is propagated backwards through the MLP by multiplying δL with the
transposed weight matrix which results in the vector ∂Cx/∂al . As introduced in (2.10), this vector
is multiplied with the derivative of the activation function to obtain the error of the previous
layer. Equation (2.15) delivers the general expression for the computation of the error in hidden
layers [19, eq. (BP2)].

∂Cx

∂al = (W l+1)Tδl+1

δl =
∂Cx

∂al ⊙ σ′(zl) = ((W l+1)Tδl+1)⊙ σ′(zl)

(2.15)

Equation (2.16) [19, eq. (BP4)] and (2.17) [19, eq. (BP3)] display the computation of the quantity
of interest which is further used to update the parameters of the MLP as shown in (2.8). While
the vector ∂Cx/∂bl is simply equal to the error of the corresponding layer, a row of ∂Cx/∂W l is
computed by multiplying every value in the output vector of the previous layer al−1 with one
entry of δl . This is repeated for every entry in δl . After the iteration, the number of rows of the
matrix ∂Cx/∂W l equals the number of entries in the vector δl and the number of columns equals
the number of entries in al−1. The matrix has the same dimensions as W l .

∂Cx

∂W l
j,k

= al−1
k · δl

j (2.16)

∂Cx

∂bl = δl (2.17)

Thilo Wendt Institut ELSYS 10

2 Theory

Regarding memory efficiency in the implementation, it is desirable to express σ′(zl) as a function
of al . This approach avoids the buffering of zl , while al is required anyways to compute (2.16).
The simplification for the ReLU function is straightforward since it is partially a linear function,
which outputs σ(z) = z = a for positive input values:

d
dz

σ(z) =
d
dz

ReLU(z) =

{
1, if a > 0
0, if a ≤ 0

(2.18)

The derivative of the sigmoid function can be expressed as a function of sigmoid itself. This
avoids the buffering of zl because al is equal to σl(zl).

d
dz

σ(z) =
d
dz

(
ez

1 + ez

)
=

ez · (1 + ez)− ez · ez

(1 + ez)2 =
ez

(1 + ez)2

= σ(z) · (1 − σ(z))
= a · (1 − a)

(2.19)

In summary, (2.14), (2.15), (2.16) and (2.17) need to be implemented to compute the partial deriva-
tives of the MLP. To update the parameters, (2.8) needs to be implemented for a training batch X.
With the simplifications from (2.18) and (2.19), only the output vectors of the hidden layers al are
required.

2.4 The XOR Problem

In the following section, the equations introduced in section 2.2 are illustrated with the XOR
problem. It is a simple classification task, which is used to verify the basic functionality of the
MLP and the corresponding training algorithm. In section 3.6, the XOR problem is solved with
the solution developed in this project and the outcome is compared to the results from [16]. The
goal of the optimization is a MLP that behaves like an XOR gate which is achieved by determining
appropriate weights and biases using BGD. Fig. 2.4 displays a simple three layer MLP that is
used to solve the XOR problem in the following example. The activation function for the hidden
layer is sigmoid and linear for the output layer. The desired behavior is described in Tab. 2.1.

Table 2.1: Truth table of the desired function. n is a unique identifier for each sample, the vector
x is the input of the MLP and the vector y is the desired output of the MLP. The right
most column contains the boolean outputs of a XOR gate.

n x0 x1 y0 y1 XOR(x)

0 0 0 0 1 false
1 0 1 1 0 true
2 1 0 1 0 true
3 1 1 0 1 false

Thilo Wendt Institut ELSYS 11

2 Theory

a1
0

a1
1

a2
0

a2
1

a3
0

a3
1

W2
0,0

W2
1,0

W2
0,1

W2
1,1

b2
0

b2
1

b3
0

b3
1

true

false

x0

x1

y0x0

x1

Figure 2.4: MLP to solve the XOR problem. The network consists of three layers with two neurons
in each layer. The layers are connected by the weight matrices W2 and W3. The network
shall behave like the XOR gate shown on the right side of the figure.

The following equations demonstrate that the MLP behaves as expected. The simplicity of the
example allows the manual computation of the result. Nevertheless, the principle applies to
more sophisticated problems but only the number and the size of the matrices are changed. The
parameters of the MLP from Fig. 2.4 are set to the following values which have been determined
with the BGD introduced in section 2.3:

W2 =

[
−2.02 2.42
−1.66 1.65

]
b2 =

[
1.33
−1.14

]

W3 =

[
−1.53 1.71
1.16 −1.23

]
b3 =

[
1.12

0.0155

]

σ2(z) =
1

1 + e−z = sigmoid(z)

The MLP is expected to output false for the input values x(n = 0) since XOR(0,0) is equal to false.
Regarding the output vector a3 of the MLP, the maximum value is interpreted as the prediction
of the MLP. In the current example, a3

1 is greater than a3
0. Since a3

1 represents the value false the
prediction of the MLP is false which matches the expected behavior. The execution of the MLP
with the other input values produces similar results for the rest of the truth table.

a1 = x(n = 0) =
[

0
0

]
a2 =σ(W2a1 + b2) a3 =W3a2 + b3

y(n = 0) =
[

0
1

]
=

[
0.791
0.242

]
=

[
−0.796

0.62

]

Thilo Wendt Institut ELSYS 12

2 Theory

2.5 Programming for Vitis High Level Synthesis

The goal of this project is to implement the equations introduced in section 2.2 and 2.3 on a FPGA.
Since the target platform is a Zynq UltraScale+ SoC FPGA from Xilinx the implementation relies
on the Xilinx toolchain. Nevertheless, similar considerations can be applied to FPGAs from other
vendors. Xilinx offers the Vitis HLS tool, which generates VHDL or Verilog code from a C++
description of the desired behavior. In comparison to traditional digital hardware design with
direct implementation in VHDL or Verilog, HLS offers a higher level of abstraction and the design
can be optimized for different constraints without major changes to the code base [6, p. 6].

2.5.1 Vitis HLS Workflow

Vitis HLS proposes a certain workflow for successful hardware development. Fig. 2.5 shows the
proposed workflow. The first step is the description of the desired behavior with a subset of C++
that can be further processed by Vitis HLS. The tool introduces major limitations in comparison
to the full feature set of C++ which are described in detail in [6, p. 95f.]. In order to verify the
desired behavior, a proven software implementation is used to produce reference results. Within
the scope of this report, this software implementation is referred to as the reference implementation.
In the C-simulation step of the HLS workflow, the C++ description to be processed to the register
transfer level (RTL) is tested against the reference implementation purely in software.
The second step is the generation of VHDL or Verilog code on RTL. Vitis HLS assesses the given
C++ code for suitability for RTL implementation. If the code is eligible, a RTL description is
generated. This process can be monitored by comprehensive log messages and a report about the
estimated timing and resource characteristics of the solution. FPGA specific characteristics of the
desired solution are given to the tool by #pragma directives or in global settings for the solution.
Within the scope of this project, the synthesis settings are given to HLS by #pragma directives
exclusively.
After the generation of the RTL description, Vitis HLS generates a test bench, where the RTL
description is tested against the reference implementation. This step, which is known as hardware
software co-simulation, allows a precise estimation of the runtime on hardware since different
scenarios can be simulated and monitored by the reports created by Vitis HLS. The reports
contain cycle accurate runtime information about the created solution.
If the co-simulation finishes successfully, the solution is exported to a packaged IP-core which
can be inserted into a Vivado block design. Thereafter the deployment flow follows the normal
procedure of synthesis and implementation of a Vivado block design [20, p. 185f.]. Besides the
RTL implementation of the IP-core, Vitis HLS provides driver code in C which can be used to
develop the software driver to control the IP-core. A comprehensive reference about the generated
driver is available in [6, p. 408f.].

C-Sim Synthesis to RTL C/RTL Co-Sim Deployment

Figure 2.5: Flowchart of the Vitis HLS workflow based on [6, p. 6].

Thilo Wendt Institut ELSYS 13

2 Theory

2.5.2 Definition of the IP-Core in HLS

Vitis HLS synthesizes a C++ function to RTL. Since this function incorporates the complete
algorithm it is known as the top level function (TLF). Vitis HLS generates two types of interface
protocols to control the IP-core. The block-level IO protocols monitor the state of the IP-core,
whereas port-level IO protocols ship data to it. Tab. 2.2 shows the signals of the ap ctrl hs

protocol. Concerning data transfer via port-level IO protocols, Vitis HLS offers several options [6,
p. 177f.]:

• Data transfer via an AXI4 master, an AXI4-Lite slave or AXI4-Stream

• Data transfer via simple wire ports optionally with a handshake mechanism

• Memory interface protocol for direct interaction with block RAM (BRAM)

In this project, the control signals from Tab. 2.2 are given to the IP-core via an AXI GPIO, which is
connected to the wire ports of the ap ctrl hs block-level protocol. A detailed description of the
test setup is available in Appendix B. Configuration data is shipped directly via AXI4-Lite and
ports for bulk data transfer are implemented as an AXI4 master. The AXI4 protocol is convenient
to use in comparison to wire or memory interface ports because it is a memory mapped protocol.
As a consequence, the AXI4-Lite of the IP-core can be mapped in the address space of a processor
in the SoC and the AXI4 master can access the global memory space of the device.
The implementation from listing 2.1 serves as an example for the implementation of IP-cores
with Vitis HLS. The hardware interface definition is explained in the current section whereas
performance optimization is covered by section 2.5.3. Independent from the aforementioned
symbols in MLPs and BGD, the example implements the following equation, in which all operands
are vectors of the same size:

d = a ⊙ b + c (2.20)

The #pragmas in line 5 to 10 define the hardware interface of the IP-core. Line 5 to 8 map the
function arguments mentioned at the port option of the directive to AXI4 master ports which
are named after the bundle option of the directive. The offset = slave option denotes that the
address, on which the AXI4 master operates, is given via an AXI4-Lite slave. The depth option is
important for proper behavior during co-simulation and it must be set to the number of transfers
between the IP-core and the memory. It instructs the HLS tool to allocate an appropriately sized
memory region for the operands in the RTL test bench. Setting this value too small or much too
high usually causes a segmentation fault during co-simulation. Line 9 and 10 map the signals
from Tab. 2.2 to the AXI4-Lite port which is also used to set the address offset of the AXI master
ports. Furthermore, the directives instruct Vitis HLS to generate corresponding driver functions
to access the signals. The signals from Tab. 2.2 are available because Vitis HLS is instructed to
use the ap ctrl hs block-level protocol by the directive in line 10. If the block-level protocol is
mapped to an AXI4-Lite port, it is not available as wire ports at the hardware interface of the
IP-core. In summary, an IP-core with the AXI4 master ports m axi read and m axi write and
the AXI4-Lite slave port s axi control is synthesized by Vitis HLS. The computation itself takes
place in line 12 to 17. A major limitation of HLS is demonstrated by this example: the size of
internal buffers l_a, l_b, l c and l d must be known before synthesis because dynamic memory

Thilo Wendt Institut ELSYS 14

2 Theory

allocation is not possible on a FPGA. Apart from that, the implementation takes advantage of
burst transfers by using the memcpy() function.

Table 2.2: Signals of the ap ctrl hs interface [6, p. 182].

Signal Feature

ap start Set to high to start the IP-core
ap idle IP-core is idling if ap idle is high
ap ready IP-core is ready to receive new data if ap ready is high
ap done Becomes high for one clock cycle when the IP-core finishes the operation

1 #include <string.h> // required for memcpy()

2 #define ARRAY_SIZE 16

3

4 void multAdd(float *a, float *b, float *c, float *d){

5 #pragma HLS INTERFACE m_axi port = a offset = slave bundle = read depth =

ARRAY_SIZE↪→

6 #pragma HLS INTERFACE m_axi port = b offset = slave bundle = read depth =

ARRAY_SIZE↪→

7 #pragma HLS INTERFACE m_axi port = c offset = slave bundle = read depth =

ARRAY_SIZE↪→

8 #pragma HLS INTERFACE m_axi port = d offset = slave bundle = write depth =

ARRAY_SIZE↪→

9 #pragma HLS INTERFACE s_axilite port = return

10 #pragma HLS INTERFACE ap_ctrl_hs port = return

11

12 float l_a[ARRAY_SIZE], l_b[ARRAY_SIZE], l_c[ARRAY_SIZE], l_d[ARRAY_SIZE];

13 memcpy(l_a, a, ARRAY_SIZE * sizeof(float));

14 memcpy(l_b, b, ARRAY_SIZE * sizeof(float));

15 memcpy(l_c, c, ARRAY_SIZE * sizeof(float));

16 for(size_t i = 0; i < ARRAY_SIZE; i++){

17 l_d[i] = l_a[i] * l_b[i] + l_c[i];

18 }

19 memcpy(d, l_d, ARRAY_SIZE * sizeof(float));

20 }

Listing 2.1: Basic example of a HLS implementation with optimization potential. The directives
in line 5 to 8 instruct the HLS tool to implement the function arguments as AXI with
a read and a write port. The block-level protocol ap ctrl hs is mapped to a AXI4-Lite
in line 9 to 10. The rest of the listing shows the communication with the main memory
and the algorithm to be optimized.

Thilo Wendt Institut ELSYS 15

2 Theory

2.5.3 Optimization for FPGA

The example from listing 2.1 shows a fully sequential implementation that does not leverage
the parallel computing capabilities of the FPGA. [21] introduces several measures to increase
resource utilization on FPGAs using HLS. The IP-cores developed in this project make use of
loop pipelining and vectorization to enable parallelism on the operational level. A dataflow
architecture is applied to enable task level parallelism.

Pipelining

Pipelining on an operational level allows the concurrent execution of operations featuring a
latency of more than one clock cycle. In the following example, a latency Lop of four clock cycles
for the computation of one element of the vector d is assumed. Fig. 2.6 shows a comparison
between the non-pipelined design from listing 2.1 and a pipelined solution as in listing 2.2. The
figure shows the desired behavior of a pipeline with an initiation interval (II) of one. The II
denotes the number of clock cycles that must pass before the pipeline can accept new input
values. The total latency of a pipelined design is given by equation 2.21, where N denotes the
number of values to be processed [21]. In the given example, N is equal to ARRAY SIZE.

Ltot = Lop + I I · (N − 1) (2.21)

Equation (2.21) illustrates that the II must be as small as possible to achieve low latency. In
a perfect pipeline, the II is equal to one but interface contention or loop-carried dependencies
may prevent Vitis HLS from achieving this goal. While loop-carried dependencies do not cause
significant problems in this project, interface contention due to insufficient memory bandwidth
is the main performance bottleneck. Interface contention arises if a memory resource is unable
to serve a request from the computational logic [21]. A typical scenario for this problem is the
usage of vectorization with insufficient memory bandwidth.

1 for(size_t i = 0; i < ARRAY_SIZE; i++){

2 #pragma HLS PIPELINE II = 1

3 l_d[i] = l_a[i] * l_b[i] + l_c[i];

4 }

Listing 2.2: By inserting the directive in line 2, the loop is pipelined by Vitis HLS as presented in
Fig. 2.6.

Thilo Wendt Institut ELSYS 16

2 Theory

d0

d1

d2

d3

d0

d1

d2

d3

Figure 2.6: Visualization of loop pipelining. The diagram on the left side shows a non-pipelined
implementation like listing 2.1. Inserting a pipeline directive like in listing 2.2 into the
computation leads to an implementation with a timing shown in the diagram on the
right side [6, p. 398].

Vectorization

While pipelining increases the utilization of a single compute unit, vectorization is applied to
scale an algorithm over multiple compute units. The #pragma HLS UNROLL directive instructs
HLS to execute a loop fully in parallel. As shown in listing 2.3, the iteration space of the outer
loop is folded by the the degree of parallelism (line 3). The directive in line 7 instructs HLS to
compute parEntries of the vector l d concurrently. From a hardware perspective, parEntries
compute units that implement dn = an · bn + cn are instantiated, which results in a timing il-
lustrated by Fig. 2.7. However, unrolling is only applicable if the memory resource holding the
vectors l a, l b, l c and l d provide sufficient memory bandwidth to concurrently read and
write parEntries operants. Insufficient memory bandwidth leads to interface contention and a
pipeline with an II greater than one. HLS provides the directive #pragma HLS ARRAY_PARTITION

and #pragma HLS ARRAY_RESHAPE to increase memory bandwidth of a given array [6, p. 366], but
it is still a limited resource. Therefore, vectorization cannot scale infinitely and other measures to
increase performance must be considered [21].

1 constexpr unsigned int parEntries = 4;

2 ...

3 for(size_t i = 0; i < ARRAY_SIZE / parEntries; i++){

4 #pragma HLS PIPELINE II = 1

5 size_t offset = i * parEntries;

6 for(size_t j = 0; j < parEntries; j++){

7 #pragma HLS UNROLL

8 l_d[i] = l_a[offset + j] * l_b[offset + j] + l_c[offset + j];

9 }

10 }

11 ...

Listing 2.3: Instructing Vitis HLS to apply vectorization using loop unrolling. The iteration space
is folded by the degree of parallelism in line 3 and the inner loop is executed fully
in parallel by inserting the directive in line 7. If sufficient memory bandwidth is
provided, the implementation results in a timing shown in Fig. 2.7.

Thilo Wendt Institut ELSYS 17

2 Theory

d0

d1

d2

d3

d0

d1

d2

d3

Figure 2.7: Visualization of vectorization. In contrast to pure pipelining, several values are com-
puted in parallel. Successful vectorization requires sufficient memory bandwidth of
the buffer that holds the operands.

Dataflow

While vectorization and pipelining provide optimizations on an operational level, dataflow en-
ables task level pipelining [6, p. 374]. Listing 2.4 shows a dataflow implementation of the example
from listing 2.1. For dataflow optimization, the algorithm is divided into functions, which are
connected by streams. In a dataflow region, the producer-consumer paradigm must be respected,
which denotes that a stream of data must be produced and consumed at the same rate. In the
given example, the multiplication unit must produce a new value every clock cycle, while the
adder unit must consume the values at the same rate. If this balance is disrupted, the pipeline
stalls and the design does not operate at maximum performance. To relax the situation, the depth
of the stream can be adjusted with the directive #pragma HLS STREAM depth=<int> but this only
applies to applications where the producer works in a non-continuous batch mode and the con-
sumer can drain the pipeline. However, this measure does not decrease the total latency because
the compute unit with the highest II dictates the performance of the whole design [21].
While streams are generally realized as ping-pong buffers (PIPO) in RAM, the usage of the
hls::stream class from Vitis HLS enforces the implementation as a first-in-first-out buffer (FIFO).
In contrast to a PIPO, a FIFO is accessed sequentially only which results in a more efficient
implementation. A value written to a FIFO by the producer traverses the complete FIFO before
the consumer reads it once [6, p. 486]. In the current example, the algorithm is split up in a
multiplication and an adder unit which are optimized with pipelining and vectorization on the
operational level.
Xilinx provides a collection of HLS functions and constructs that are optimized for Xilinx devices
which are referred to as the Vitis libraries [6, p. 32]. Within the scope of this report, the basic
linear algebra (BLAS) functions of the libraries are used. Besides the computational building
blocks, which are designed for a dataflow implementation, the Vitis libraries offer functions to
move data from memory to streams and vice versa. Vectorization is provided by the WideType

template class, which is configured with the datatype of the values and the number of entries in
the vector as shown in line 5 of listing 2.4. The current example makes use of WideType and the
corresponding functions to interact with memory. The computational building blocks provided
by the Vitis libraries are connected as demonstrated in line 32 to 39 of listing 2.4.
The dataflow implementation may seem cumbersome in the current example but it enables a
modular software design in HLS with building blocks that are efficiently connected. The algorithm
is split up into small pieces which are optimized using a divide and conquer approach. Dataflow
architectures enable design reuse and enforce an efficient implementation [21].

Thilo Wendt Institut ELSYS 18

2 Theory

⊙ +

l a l b l c l d

Figure 2.8: Structure of the dataflow implementation.

Synchronization of dataflows

In the case of the algorithms to be implemented in this project, it is necessary to synchronize a
dataflow because the computation depends on previously calculated results. This dependency is
visible in (2.3) and (2.15), where the computation relies on the results of the previously processed
layer. The results are buffered in a local BRAM array but Vitis HLS does not allow such a buffer
to be the destination and source of a dataflow. Therefore, the content from the destination buffer
is copied to a new source buffer which forces the dataflow function to finish before the next
execution starts. Indeed, this leads to a sequential execution of the algorithm but due to the
dependencies explained above, the algorithm cannot be further parallelized.

Dataflow

Buffer 1 Buffer 0
copy

Figure 2.9: Synchronization mechanism between dataflow functions. The dataflow function is
fully drained into the destination buffer 0, whereafter its content is copied to the
source buffer 1. Thereafter, the dataflow function can be executed again with buffer 1
as source.

Further optimizations

The usage of vectorization by simply widening the data paths and processing more elements
per clock cycle draws on memory bandwidth. In comparison to computational resources and
memory size, the bandwidth to move data is a very limited resource in FPGAs. As mentioned
above, pure vectorization, which is also known as horizontal unrolling, can not scale infinitely. Vitis
HLS only offers the directives #pragma HLS UNROLL to apply horizontal unrolling together with
#pragma HLS ARRAY_PARTITION and #pragma HLS ARRAY_RESHAPE to increase memory band-
width. In order to further increase parallelism, these techniques must be combined with vertical
unrolling. By vertically unrolling an algorithm, memory bandwidth is used economically by only
fetching data once and thereafter reusing it throughout the whole algorithm. While horizontal
unrolling draws on rather limited memory bandwidth between processing elements, vertical un-
rolling stores data in local caches at the expense of widely available buffer space [21]. Within the
scope of this thesis, these optimizations have been used indirectly through the Vitis libraries [22].

Thilo Wendt Institut ELSYS 19

2 Theory

1 #include "hls_stream.h"

2 #include "Vitis_Libraries/blas/L1/include/hw/xf_blas.hpp"

3 #define ARRAY_SIZE 16

4 constexpr size_t parEntries = 4;

5 using Vector_t = xf::blas::WideType<float, parEntries>;

6 using VectorStream_t = hls::stream<Vector_t::t_TypeInt>;

7

8 void multiply(VectorStream_t& a, VectorStream_t& b,

9 VectorStream_t& result, size_t n){

10 for(size_t i = 0; i < n / parEntries; i++){

11 #pragma HLS PIPELINE II = 1

12 Vector_t l_a, l_b, l_result;

13 l_a = a.read(); l_b = b.read();

14 for(size_t j = 0; j < parEntries; j++){

15 #pragma HLS UNROLL

16 l_result[j] = l_a[j] * l_b[j];}

17 result.write(l_result);}

18 }

19 void add(VectorStream_t& a, VectorStream_t& b,

20 VectorStream_t& result, size_t n){

21 for(size_t i = 0; i < n / parEntries; i++){

22 #pragma HLS PIPELINE II = 1

23 Vector_t l_a, l_b, l_result;

24 l_a = a.read(); l_b = b.read();

25 for(size_t j = 0; j < parEntries; j++){

26 #pragma HLS UNROLL

27 l_result[j] = l_a[j] + l_b[j];}

28 result.write(l_result);}

29 }

30 void multAdd(float *a, float *b, float *c, float *d){

31 ...

32 #pragma HLS DATAFLOW

33 VectorStream_t l_strA, l_strB, l_strC, l_strMult, l_strD;

34 xf::blas::readVec2Stream<float, parEntries>(l_a, ARRAY_SIZE, l_strA);

35 xf::blas::readVec2Stream<float, parEntries>(l_b, ARRAY_SIZE, l_strB);

36 multiply(l_strA, l_strB, l_strMult, ARRAY_SIZE);

37 xf::blas::readVec2Stream<float, parEntries>(l_c, ARRAY_SIZE, l_strC);

38 add(l_strMult, l_strC, l_strD, ARRAY_SIZE);

39 xf::blas::writeStream2Vec<float, parEntries>(l_strD, ARRAY_SIZE, l_d);

40 ...

41 }

Listing 2.4: Fully optimized Vitis HLS implementation. The functions add(...) and
multiply(...) are optimized with unrolling and pipelining on the operational level.
Using the directive in line 32, the functions are pipelined on a task level.

Thilo Wendt Institut ELSYS 20

3 Results

The following chapter presents the implementation and verification of the IP-cores developed
in this project. Section 3.1 describes constraints that apply to the MLP as well as the BGD. Con-
sequently, the implementation of both IP-cores and shortcomings of the solutions are described
in section 3.2 to 3.5. Finally, the outcomes of the functional verification and the performance
examinations are presented in section 3.6 and 3.7. Fig. 3.1 summarizes the solution that has been
developed within this project. A detailed communication example between the components is
presented in the sequence diagram of Fig. 3.5.

MLP BGD

Main Memory

Processor

ARM Cortex
R5

Control

Control

Init Parameters

Parameters Results Parameters
IP-Core

Legend

AXI4

AXI4-Lite

Figure 3.1: Composition of the MLP and the BGD with the main memory and the processor. The
term parameters summarizes the entity of all weights and biases, whereas the term
results describes the results of all layers of the MLP.

3.1 Implementation Constraints

The MLP and the BGD algorithm are implemented as a dataflow architecture with vectorization
as described in section 2.5.3. The degree of parallelism is set by the variable ParEntries in
the header file Settings.hpp. In comparison to a pure software version like [23], the current
implementation introduces a lower degree of flexibility:

• The maximum size of the MLP is constrained by the amount of BRAM allocated at synthesis
time.

• Every hidden layer has the same number of neurons, which is adjustable during runtime.

• The degree of parallelism ParEntries is adjusted before synthesis.

• log2(ParEntries) must be an integer greater or equal to zero.

• The number of neurons in every layer must be an integer multiple of the degree of paral-
lelism. This also applies to the input and output layer.

• Every hidden layer has the same activation function which, is adjustable before synthesis.

• The output layer has a linear activation.

Thilo Wendt Institut ELSYS 21

3 Results

The possibility of decoupling the number of inputs and outputs from the degree of parallelism
has been investigated. Due to dependencies between the layers in the BGD and unsuccessful
co-simulation of the MLP, the independency of these design parameters is not possible.
Despite the above mentioned constraints, the implementation offers a greater degree of flexibility
than [2]. Respecting the limitations introduced by the vectorization and assuming sufficient
BRAM resources, the following parameters are adjustable during runtime:

• The number of input neurons.

• The number of output neurons.

• The number of hidden layers, which must be always greater or equal to one.

• The batch size of the BGD.

• The learning rate of the BGD.

• The initial transfer of the parameters controlled by loadParameters.

• The export behavior of the intermediate results in the MLP controlled by exportLayers.

3.2 Implementation of the MLP

Fig. 3.2 shows the implementation of the MLP as a dataflow architecture. First, the weight matrices
W and the bias vectors b are transferred to the internal BRAM of the IP-core via AXI. Similar
to the example from section 2.5 the internal BRAM is declared as an array of a fixed size. By
declaring this array as static, it is persistent over multiple executions of the IP-core [6, p. 116].
Therefore, the transfer of the MLP parameters only needs to be done initially or if the parameters
have been altered by the BGD kernel.
After transferring the MLP parameters as well as the input values to the BGD, the function
processLayer() is executed for every hidden layer. Referring to (2.3), the computation of the
MLP is split up in the matrix vector processing and the application σl to zl . The Vitis BLAS library
provides a template function for matrix vector multiplication in a dataflow environment:

template <typename t_DataType, unsigned int t_LogParEntries>

void gemv(

const unsigned int m,

const unsigned int n,

const t_DataType alpha,

hls::stream<typename WideType<t_DataType, (1 <<

t_LogParEntries)>::t_TypeInt>& M,↪→

hls::stream<typename WideType<t_DataType, (1 <<

t_LogParEntries)>::t_TypeInt>& x,↪→

const t_DataType beta,

hls::stream<typename WideType<t_DataType, 1>::t_TypeInt>& y,

hls::stream<typename WideType<t_DataType, 1>::t_TypeInt>& yr)

Thilo Wendt Institut ELSYS 22

3 Results

The function computes the following equation:

yr = α(M · x) + β · y; (3.1)

With yr = zl , M = W l , x = al−1, y = bl and α = β = 1, the function is used to compute
the matrix vector multiplication and the addition of the bias. Consequently, σl is applied to zl to
compute al . Transfer functions between BRAM and streams are provided by the Vitis BLAS library.
Since the output layer has a linear activation the function outputLayer() omits σl and outputs
directly the result of gemv(). The functions processLayer() and outputLayer() implement a
dataflow but since the computation of the following layer depends on the results of the previous
layer al−1 the executions are synchronized as illustrated by Fig. 2.9. After processing all layers
of the network, the results are transferred back to the DDR via AXI. The IP-core offers the
parameters loadParameters and exportLayers that are adjustable during runtime. The option
loadParameters determines if the weights and biases are transferred to the internal BRAM
before the computation of the MLP whereas exportLayers controls whether all intermediate
results from all layers or only the output layer are transferred to the DDR. As explained in section
3.3, all intermediate results are required to execute the BGD algorithm.

W

b

Input

Output

W

b

al−1

al

W l · al−1 + bl

σl

Repeat for all layers

zl

DDR

BRAM

Computation

Legend

Figure 3.2: Block diagram of the HLS implementation of the MLP. The algorithm is split up in
the matrix vector processing and the application of σl to zl . The compute units are
connected with streams. The red boundary describes the function processLayer()

which computes the output of one layer.

Thilo Wendt Institut ELSYS 23

3 Results

3.3 Implementation of the BGD

Fig. 3.3 illustrates the implementation of the BGD algorithm in HLS. The algorithm works on a
training batch X which is processed by the MLP before. Prior to the actual algorithm, the desired
behavior yX and the results from the MLP aX of the whole training batch are transferred to
the IP-core via AXI. Similar to the MLP, the BGD IP-core offers a runtime adjustable parameter
loadParameters which controls whether W and b are transferred prior to the execution of the
algorithm. The algorithm is split up in two phases:

1. Computation of the averaged partial derivatives ∑ ∂C
∂W and ∑ ∂C

∂b

2. Update of the MLP parameters

To determine the partial derivatives of a layer l, the error δl is computed first. δ is described by
(2.14) and (2.15). Both equations are relatively simple to implement in HLS. For the multiplication
(W l+1)Tδl+1 the function gemv() from the Vitis libraries is used. The transposition of W l+1 is
performed by the custom transfer function gem2StreamTranspose() that reads a matrix from
BRAM to a stream in a transposed fashion. This avoids the buffering of a transposed version of
the weight matrices.
While the computation of δ fulfills the producer-consumer paradigm, a bottleneck situation is
present at the computation of the matrix ∂C/∂W l which is expressed by (2.16). Assuming that the
number of iterations of the loop in line 4 of listing 3.1 p n / t ParEntries is greater than one,
the stream p delta is not read every clock cycle i.e. the II is greater than one. Supposing a reliable
producer, the stream between the computation of δ and ∂C/∂W l is written more frequent than
it is read which results in a stalling pipeline. The situation is illustrated by Fig. 3.4: In this case,
the reading rate of the compute unit calculating ∂C/∂W l is only half of the writing rate of the
producer of δl . As a result, the input stream fils up faster than it is drained by the consumer and
the design stalls. Stalling of the producer can be prevented by increasing the stream depth but
the overall latency is not reduced because the II of the consumer is not decreased. The situation
worsens with increasing size of the vector al−1. In order to optimize the situation, a consumer
that operates at the same rate as the producer is required. The issue has been identified in this
project but remains to be solved in a further revision. The development of a better solution was
not possible within the timeline of the thesis.

Thilo Wendt Institut ELSYS 24

3 Results

δl δl+1

∂C
∂W

∂C
∂b

∑ ∂C
∂W ∑ ∑ ∑ ∂C

∂b

W − η
m · ∑ ∂C

∂W b − η
m · ∑ ∂C

∂b

yX

aX

W

b

yX

aX

W

b

Repeat

for all

layers and

samples

DDR

BRAM

Computation

Legend

Figure 3.3: Block diagram of the HLS implementation of the BGD. The algorithm works on a
batch X of multiple samples which are given by the MLP. The sequence in the red
boundary is executed for every sample in the batch. The BGD implements a dataflow
like in Fig. 3.2 but in favor of simplicity, the streams between the computing elements
are omitted.

1 for (size_t m = 0; m < p_m; m++){

2 xf::blas::WideType<t_DataType, 1> l_delta = p_delta.read();

3 p_biasGradient.write(l_delta);

4 for (size_t n = 0; n < p_n / t_ParEntries; n++){

5 #pragma HLS PIPELINE

6 xf::blas::WideType<t_DataType, t_ParEntries> l_outputPrev =

p_outputPrev.read();↪→

7 xf::blas::WideType<t_DataType, t_ParEntries> l_weightGradient;

8 for (size_t j = 0; j < t_ParEntries; j++){

9 #pragma HLS UNROLL

10 l_weightGradient[j] = l_outputPrev[j] * l_delta[0];

11 }

12 p_weightGradient.write(l_weightGradient);

13 }

14 }

Listing 3.1: HLS implementation of the computation of the gradients. p m and p n denote the num-
ber of rows and columns in the matrix ∂C/∂W l whereas t ParEntries denotes the de-
gree of parallelism. p delta, p outputPrev, p biasGradient and p weightGradient

are hls::stream function arguments.

Thilo Wendt Institut ELSYS 25

3 Results

δ[0]

δ[1]

δ[2] δ[1]

δ[3] δ[2]

δ[4] δ[3] δ[2]

δ[0] ·
[

a[0]
a[1]

]

δ[0] ·
[

a[2]
a[3]

]

δ[1] ·
[

a[0]
a[1]

]

δ[1] ·
[

a[2]
a[3]

]

δ[0] · a[0]

δ[0] · a[1]

δ[0] · a[2]

δ[0] · a[3]

δ[1] · a[0]

δ[1] · a[1]

δ[0] · a[2]

δ[0] · a[3]

δ[0] · a[0]

δ[0] · a[1]

δ[0] · a[0]

δ[0] · a[1]

δ

δ

δ

δ

δ

Figure 3.4: Illustration of the bottleneck situation at the computation of the gradients. In this
scenario, ParEntries = 2 and the vector al−1 has four entries. Assuming a reliable
consumer on the right of the process, a depth of one for the output stream is sufficient
but in this case, it has been set to three for illustration purposes. The input stream of
al−1 is omitted for simplification.

3.4 Combination of the BGD and the MLP

The BGD depends on the results produced by the MLP. Fig. 3.5 shows the sequence diagram of
the processing of one batch on the target platform, where a processor orchestrates the execution
order. The MLP and the BGD access a shared memory in the main system memory, which is
assumed to be DDR, to exchange results of the MLP and new parameters computed by the BGD.
After the initialization of the parameters by the processor, the MLP loads them once and processes
all training samples in the batch. The results of all layers are transferred to the DDR after the
computation has finished. Consequently, the BGD loads the parameters and the results of the
MLP. After the update of the parameters as described in section 3.3, the parameters are stored
back to the DDR and the MLP updates its parameters at the next execution. Further executions of
the BGD do not load the parameters from the main memory because the copy in the local BRAM
still matches the version in the DDR.

Thilo Wendt Institut ELSYS 26

3 Results

:Processor :MLP :BGD :DDR

initParameter()

start()

loadParameter()

loadInput()

storeResults()

done()

start()
loadInput()

storeResults()

done()

start()

loadParameter()

loadResults()

storeParameter()

done()

start()

loadParameter()

loadInput()

storeResults()

done()

Figure 3.5: Sequence diagram of the execution order of the MLP and the BGD. The diagram
shows the processing of one batch with a size of two including the consequent update
of the MLP.

Thilo Wendt Institut ELSYS 27

3 Results

3.5 Shortcomings

While the macro structure of the implementation is mature, there are still some shortcomings
to be fixed in further optimizations. The biggest issue is insufficient memory bandwidth. As
mentioned in section 2.5.3, insufficient memory bandwidth leads to interface contention which
prevents pipelining. When synthesizing the HLS designs, Vitis HLS is unable to schedule the
load operations from the internal BRAM with the desired II of one due to insufficient memory
bandwidth. Currently, internal arrays are declared as follows:

float bramArray[arraySize];

Increasing memory bandwidth by partially partitioning this one-dimensional array with the
ARRAY PARTITION directive either with block or cyclic partitioning leads to a freeze in the co-
simulation. Similar behavior has been observed when using #pragma HLS ARRAY_RESHAPE . A
promising approach is vectorization by using a two-dimensional array and fully partitioning the
second dimension:

float bramArray[arraySize / ParEntries][ParEntries];

#pragma HLS ARRAY_PARTITION variable=bramArray complete dim=2

By fully partitioning the second dimension of the array, every element of the vector is stored
in an individual BRAM instance, which increases overall memory bandwidth and enables the
reading of ParEntries in one clock cycle [6, p. 366f.]. This solution is a compromise between the
economic utilization of BRAM resources and the exploitation of memory bandwidth. By fully
partitioning only the second dimension of the array, ParEntries BRAM instances are allocated.
This enables the scheduling of a parallel access of ParEntries values in one clock cycle while
maintaining a reasonable resource footprint. In contrast, a fully partitioned and equally sized one-
dimensional array would consume arraySize memory entities. Since arraySize is usually much
larger than ParEntries the complete partitioning of large one-dimensional arrays is inefficient or
even infeasible.
This declaration is equivalent to using the WideType class of the Vitis libraries, where the entries
of the vector are stored in a fully partitioned array [22]. An equally sized array using the WideType

class is declared as follows:

xf::blas::WideType<float, ParEntries> bramArray[arraySize / ParEntries];

A replacement of the buffers with a vectorized version has not been examined within the scope of
this project. It is strongly recommended to investigate this possibility in future redesigns because
the current shortage of memory bandwidth prevents the solution to exploit the full potential
of parallel computing on the FPGA. The severity of this issue is illustrated by the performance
examinations presented in section 3.7.

Thilo Wendt Institut ELSYS 28

3 Results

When replacing the narrow buffers with a vectorized solution, the following aspects need to be
considered: Currently, the implementation heavily relies on the data mover functions provided
by the Vitis libraries to move data between streams and memory. These functions only provide
interfaces to non-vectorized arrays. As a consequence, custom data mover functions need to be
implemented, which provide an interface to vectorized arrays. Furthermore, the on-the-fly trans-
position of matrices as implemented by the function gem2StreamTranspose() may not perform
well due to the columnwise access of the matrix. Since the BGD only works on transposed versions
of the matrices it could be stored in a transposed fashion to overcome this issue. Nevertheless,
this workaround requires a transposition of the matrix when interacting with the main memory.
Another shortcoming is the narrow AXI to communicate with the main system memory. Currently,
only one value per clock cycle is transferred to the IP-core which equals a width of four byte of
the data bus. By replacing the non-vectorized arguments of the TLF with vectorized WideType

arrays, the data bus between the system memory and the IP-core can be widened up to 64 byte.
By widening the data path, up to 4096 byte per request to the main memory can be transferred
[6, p. 384].
Finally, the synchronization mechanism introduced in section 2.5.3 is not elegant. A perfect
dataflow implementation without pipeline draining between the layers would be preferable. [16]
claims to have implemented such a dataflow architecture but there is no implementation available.
Since the function vec2GemStream(), which interfaces between BRAM and gemv() from the Vitis
libraries, feeds the input vector to the output stream multiple times a dataflow equivalent needs
to cache the incoming stream while feeding it directly to the output stream. After the input
stream is exhausted, the dataflow equivalent needs to read from the internal cache. If producer
and consumer operate at different write and read rates as introduced in section 3.3, the situation
gets even more sophisticated.

Thilo Wendt Institut ELSYS 29

3 Results

3.6 Functional Verification

Fig. 3.6 shows the general structure of the test bench that is used to verify the HLS implemen-
tations of the MLP and the BGD in all development stages. The open source project Cranium
serves as a reference implementation for the functional verification. It is a header-only plain C
implementation of the desired algorithms, which makes it usable in the HLS test bench and on
the target platform [23]. In the Vitis HLS test bench, the designs are encapsulated in container
classes, which realize the structure from Fig. 3.6. On the target platform, a shared memory is
allocated by the processor and initialized by Cranium. Thereafter, the kernels are executed as
illustrated by the sequence diagram from Fig. 3.5 and the results are compared to the reference
implementation executed on the processor.
All MLP configurations tested in section 3.7 produce the same results as the reference implemen-
tation on the target platform with an error in the order of magnitude of 10−8. The BGD algorithm
is verified by solving the XOR problem described in section 2.4. With the configuration given in
Tab. 3.1, the algorithm solves the XOR problem in 1065 epochs which equals the performance
of the reference implementation. However, each individual epoch is executed faster than the
software reference.
In order to estimate the performance of the implementation on solving the XOR problem, [16]
serves as a benchmark. The architecture of the implementation from [16] is not clearly described
but it is assumed that it uses a similar configuration to Tab. 3.1. The major difference to the current
project is the integration of the MLP and the BGD in a single IP-core. This offers performance
benefits over a modular approach because the communication via the main system memory is
omitted, which is the main source of latency. Therefore, [16] performs better on solving the XOR
problem but the flexibility is worse. Fig. 3.7 illustrates the outcome of the comparison. As shown
in Fig. 3.5, the training involves multiple executions of the MLP IP-core. After each execution, the
IP-core needs to be reconfigured for the next training example, which is done by the processor
via AXI4-Lite. This reconfiguration is the main source of latency and is only displayed in the
gross value. The net value is the sum of the latencies of the MLP and the BGD disregarding the
reconfiguration of the IP-cores.

SW Results

Init parameter ==

FPGA FPGA Results

Figure 3.6: Structure of the test bench with Cranium [23] serving as a reference implementation.
The initialization of the parameters is also performed by Cranium.

Thilo Wendt Institut ELSYS 30

3 Results

Table 3.1: Configuration of the network solving the XOR problem.

Parameter Value

numberOutputs 2
numberInputs 2
numberNeurons 2
numberHiddenLayers 1
Activation function of the hidden layers Sigmoid
Activation function of the output layer Linear
Batch size 4
Number of training examples 4
Learning rate (η) 0.5

ParEntries = 1

ParEntries = 2

Benchmark

1,000

2,000

3,000

4,000 3,
90

6

3,
91

2

1,
59

72,
00

7

2,
13

0

La
te

nc
y

(c
lo

ck
cy

cl
es

)

Gross Net

Figure 3.7: Performance of the implementation solving the XOR problem. The diagram shows
the latency of one epoch of the BGD. The gross value includes reconfiguration of
the IP-cores by the processor via AXI4-Lite, whereas the net value only considers the
execution latency of the IP-cores.

Thilo Wendt Institut ELSYS 31

3 Results

3.7 Performance Examination

The following section presents the examination of the performance achieved by the networks
MLP-1 and MLP-2 and the corresponding BGD algorithm. Section 3.7.1 to 3.7.3 only present the
examinations, while section 3.8 contains an explanation of the results. The measurements have
been carried out with the setup described in Appendix B. Tab. 3.2 shows the configurations of
MLP-1 and MLP-2. Apart from the number of inputs and outputs, the architectures match the
networks in [2] but to carry out the investigation up to a degree of parallelism of 16, an equal
minimum vector size is required (see section 3.1).

Table 3.2: Configuration of the networks used for performance investigations.

Parameter MLP-1 MLP-2

numberOutputs 16 16
numberInputs 16 16
numberNeurons 128 64
numberHiddenLayers 1 3

Tab. 3.3 shows the global settings for all simulation runs and executions on the target platform.
While the parameters prefixed with hwNumber determine the size of the internal BRAM, which
limits the size of the MLPs to be processed by the IP-cores, the actual size of the network is set
during runtime via AXI4-Lite and equals the settings given in Tab. 3.2. The oversizing of the
BRAM buffers enables design reuse of the same IP-core for MLP-1 and MLP-2.

Table 3.3: IP-core settings applied to all measurements. Parameters prefixed with hw determine
the size of the allocated BRAM which limits the size of the MLPs to be processed.

Parameter Value

hwNumberOutputs 32
hwNumberInputs 32
hwNumberNeurons 128
hwNumberHiddenLayers 3
Clock period 10 ns
Output activation Linear

The software reference implementation from [23] is not used as a performance benchmark because
it is not optimized for low latency on the target platform. As a result, the reference implementation
performs three orders of magnitude worse than the hardware implementation which is not
suitable to estimate the performance. Instead, the investigations in the following section use the
results from [2] for the latency of MLP-1 and MLP-2. For the BGD on such networks, the literature
does not supply suitable results for comparison. [2] only provides values for MLPs with ReLU
activation function but as shown in section 3.7.2 the networks with a sigmoid activation function
perform similarly.

Thilo Wendt Institut ELSYS 32

3 Results

During the performance investigation, the degree of parallelism ParEntries and the activation
function of the hidden layers have been altered. The diagrams in the following sections display
the latency for all possible values of ParEntries from one to eight executed on the target platform
and the corresponding latency of the co-simulation from Vitis HLS. Additionally, ParEntries = 16
has been simulated but not executed on the target platform because a higher degree of parallelism
does not further decrease the latency. The diagrams always show the minimum achievable latency
which implies that the MLP parameters are not transferred from the main memory before the
algorithm is executed and that the results of the hidden layers are not transferred to the main
system memory after execution. Tab. 3.5 summarizes additional latencies for these operations.
The batch size of the BGD is set to one. Latency induced by bigger batches is presented in section
3.7.3.

3.7.1 Examination of Networks with ReLU Activation

This section presents the performance examination of MLP-1 and MLP-2 with ReLU activation
of the hidden layers and the corresponding BGD algorithm. Tab. 3.4 contains the latencies from
[2] which serve as a benchmark. Fig. 3.8 and 3.9 present the results of the examination. The
implementations of the current project perform similarly to the benchmark for ParEntries = 1
and ParEntries = 2 but higher values do not lead to a further performance increase.

Table 3.4: Benchmark values for the MLPs from [2]. The values have been measured on MLPs
with a ReLU activation function in the hidden layers.

MLP-1 MLP-2
ParEntries 1 2 32 1 4 32

Latency (clock cycles) 4,910 2,454 348 10,220 2,552 368

Thilo Wendt Institut ELSYS 33

3 Results

1 2 4 8 16

2,000

3,000

4,000

5,000

4,
46

2

2,
36

1

2,
36

9

2,
39

9

2,
46

4

4,
44

1

2,
33

9

2,
34

7

2,
37

8
ParEntries

La
te

nc
y

(c
lo

ck
cy

cl
es

)

Simulation Hardware

1 2 4 8 16

13,000

13,500

14,000 13
,9

08

13
,5

63

13
,0

37

13
,1

02 13
,2

94

14
,0

13

13
,6

67

13
,1

41

13
,2

07

ParEntries

Simulation Hardware

Figure 3.8: Performance of a network with one hidden layer, 128 neurons and ReLU activation
of the hidden layers a.k.a. MLP-1. Left: Latency of the MLP. Right: Latency of the
corresponding BGD.

1 2 4 8 16

4,000

6,000

8,000

10,000

12,000

10
,7

70

5,
57

7

5,
58

9

5,
62

9

5,
70

6

10
,7

48

5,
55

5

5,
56

7

5,
60

8

ParEntries

La
te

nc
y

(c
lo

ck
cy

cl
es

)

Simulation Hardware

1 2 4 8 16
32,000

34,000

36,000

38,000

36
,6

20

33
,8

59

33
,3

46

33
,5

38 34
,0

49

36
,8

21

34
,0

59

33
,5

46

33
,7

39

ParEntries

Simulation Hardware

Figure 3.9: Performance of a network with three hidden layers, 64 neurons and ReLU activation
of the hidden layers a.k.a. MLP-2. Left: Latency of the MLP. Right: Latency of the
corresponding BGD.

Thilo Wendt Institut ELSYS 34

3 Results

3.7.2 Examination of Networks with Sigmoid Activation

The examinations from section 3.7.1 are repeated with the sigmoid activation function for the
hidden layers. The MLP and the BGD perform similarly to the configuration of section 3.7.1.

1 2 4 8 16

2,000

3,000

4,000

5,000

4,
48

5

2,
38

4

2,
39

2

2,
42

2

2,
48

7

4,
46

4

2,
36

2

2,
37

0

2,
40

0

ParEntries

La
te

nc
y

(c
lo

ck
cy

cl
es

)

Simulation Hardware

1 2 4 8 16

13,000

13,500

14,000 13
,9

08

13
,5

63

13
,0

37

13
,1

02 13
,2

94

14
,0

13

13
,6

67

13
,1

41

13
,2

06

ParEntries

Simulation Hardware

Figure 3.10: Performance of a network with one hidden layer, 128 neurons and sigmoid activation
of the hidden layers a.k.a. MLP-1. Left: Latency of the MLP. Right: Latency of the
corresponding BGD.

1 2 4 8 16

4,000

6,000

8,000

10,000

12,000

10
,8

39

5,
64

6

5,
65

8

5,
69

8

5,
77

3

10
,8

20

5,
62

4

5,
63

6

5,
67

7

ParEntries

La
te

nc
y

(c
lo

ck
cy

cl
es

)

Simulation Hardware

1 2 4 8 16
32,000

34,000

36,000

38,000

36
,6

20

33
,8

59

33
,3

46

33
,5

38 34
,0

49

36
,8

28

34
,0

59

33
,5

46

33
,7

39

ParEntries

Simulation Hardware

Figure 3.11: Performance of a network with three hidden layers, 64 neurons and sigmoid activa-
tion of the hidden layers a.k.a. MLP-2. Left: Latency of the MLP. Right: Latency of
the corresponding BGD.

Thilo Wendt Institut ELSYS 35

3 Results

3.7.3 Additional Latencies

The examinations presented in section 3.7.1 and 3.7.2 display the minimum achievable latency.
However, the IP-cores offer options to transfer the weights and biases from the main system
memory to the internal BRAM. Additionally, the MLP exports the results of the hidden layers
to the main system memory when setting the parameter exportLayers. The latencies from Tab.
3.5 are added to the aforementioned values when carrying out the corresponding operation.
The values apply to all configurations disregarding the degree of parallelism and the activation
function. The duration of the AXI transfer approximately equals the number of values to be
transferred plus some overhead for the bus management.

Table 3.5: Additional latencies in clock cycles induced by the export of the results of the hidden
layers and the update of the weights and biases of the MLP.

MLP-1 MLP-2
Simulation Hardware Simulation Hardware

Load Parameters 4,269 4,336 10,477 10,550
Export Layer 306 352 425 475

Increasing the batch size of the BGD induces additional latency on execution. Fig. 3.12 presents
the latency for each additional training example in a batch of the BGD. The additional latency
only depends on the size of the MLP but not on the activation function.

1 2 4 8 16

4,500

5,000

5,500 5,
37

6

5,
03

0

4,
50

3

4,
56

6 4,
73

6

5,
37

6

5,
03

0

4,
50

3

4,
56

6

ParEntries

La
te

nc
y

(c
lo

ck
cy

cl
es

)

Simulation Hardware

1 2 4 8 16

12,000

13,000

14,000

15,000

16,000

17,000

15
,7

36

12
,9

74

12
,4

60

12
,6

50 13
,1

39

15
,7

42

12
,9

74

12
,4

60

12
,6

50

ParEntries

Simulation Hardware

Figure 3.12: Latency of the BGD for each additional training example. The diagram on the left
displays the values for MLP-1 and the diagram on the right represents MLP-2.

Thilo Wendt Institut ELSYS 36

3 Results

3.8 Summary and Interpretation

The performance examinations show that the implementation of the MLP is able to compete with
the benchmark for a low degree of parallelism. The latencies for ParEntries = 1 and ParEntries

= 2 are similar to the benchmark. While increasing ParEntries to 2 cuts the latency in half,
higher degrees of parallelism do not lead to further improvement. In fact, the MLP performs
even worse when further increasing ParEntries. The interface contention of the internal BRAM
buffers discussed in section 3.5 is expected to be the reason for this behavior. While increasing
the degree of parallelism may reduce the latency of the actual computation, the increased delay
caused by insufficient memory bandwidth prevents overall performance improvement.
A similar behavior is observed at the BGD. The current implementation of the BGD features the
lowest latency for ParEntries = 4, while higher degrees of parallelism lead to higher latency.
In addition to the interface contention issue, the implementation suffers from the inaccurate
producer-consumer situation described in section 3.3. In contrast to the MLP, a higher degree of
parallelism only reduces the overall latency by about 9 %.
In contrast to the benchmark from [2] which implements the MLPs with a fixed point data
type, the examinations have been carried out with a single-precision floating-point data type.
Performance with a fixed-point data type has not been investigated but it stands out that the
execution with floating-point performs similarly for low degrees of parallelism to a fixed-point
implementation. However, it remains to be investigated if this performance is caused by the
dataflow architecture or by the computational resources of the target platform.
The performance examinations show that the result of the co-simulation is eligible to estimate
the latency on the target platform. Lengthy synthesis and implementation runs are only required
in the final testing phase but all optimizations can be applied by exclusively using the simulation
tools offered by Vitis HLS. In fact, the comprehensive log output of Vitis HLS even facilitates
the optimization in simulation in comparison to testing on hardware. Minor differences between
the simulation and the hardware are caused by the differences in scheduling the AXI transfers.
Fig. 3.12 illustrates this behavior: In contrast to the other measurements, Fig. 3.12 only displays
the additional runtime caused by computations while disregarding the AXI transfer. In this
measurement, the latencies on the hardware match the simulation result.

Thilo Wendt Institut ELSYS 37

4 Summary and Outlook

The success of the project is estimated by referring to the research questions from section 1.2:
For a low degree of parallelism, the dataflow architecture of the MLP performs similarly to the
benchmark, which proves the implementation methodology to be suitable. Performance for a high
degree of parallelism is expected to rise after solving the interface contention issue described in
section 3.5. Despite the performance issue, the implementation offers great flexibility and runtime
configuration options compared to other solutions. In summary, the project delivers a solid basis
with potential for optimization.
The implementation of the BGD on a FPGA using Vitis HLS is feasible. The functional verification
delivered a positive result and the hardware solution runs at a lower latency than a software
implementation. However, the third research question, which asks for minimum latency without
resource constraints, cannot be answered within the scope of project because an increased resource
usage does not lead to performance improvement. The solution suffers from interface contention
and a non-perfect task level pipeline as described in section 3.3 and 3.5. When overcoming these
issues, the solution is expected to perform much better than the current version. Nevertheless,
the implementation also offers great runtime configuration and forms a solid basis for further
improvements.
Answering the last research question, the HLS C++ implementations of this project are not suitable
for performance optimized execution on a general purpose processor. The constructs used in the
C++ description are specifically tailored for the post processing with Vitis HLS. Furthermore,
Vitis HLS does not support important software features like dynamic memory allocation, which
leads to rather inflexible solutions compared to a software implementation. In summary, a FPGA
as a target platform differs too much from a processor and therefore optimizations are applied
differently.

Outlook

It is strongly recommended to solve the issues mentioned in section 3.5 but further optimizations
can be applied. The concept of a dataflow architecture can be ported to the interfaces of the
IP-cores by using AXI4-Stream, which enables the outsourcing of the main memory accesses
to a specific direct memory access (DMA) unit. Since a DMA unit feeds a specified amount of
data from the main memory to the IP-core without processor intervention the overall system
performance can be increased by avoiding high latency reconfigurations via AXI4-Lite.
Furthermore, the BRAM buffers, which are currently defined in the HLS project, can be exter-
nalized. External BRAM blocks in the Vivado block design enable the user to modify the buffer
sizes without changing the HLS project. While this modification does not lead to lower latency,
the usability of the IP-cores is improved.

Thilo Wendt Institut ELSYS 38

List of Figures

2.1 Overview of the components in RL . 4
2.2 Illustration of a MLP and definition of a perceptron 6
2.3 Flowchart of the optimization process with BGD . 8
2.4 MLP to solve the XOR problem . 12
2.5 Flowchart of the Vitis HLS workflow . 13
2.6 Visualization of loop pipelining . 17
2.7 Visualization of vectorization . 18
2.8 Structure of the dataflow implementation . 19
2.9 Synchronization mechanism between dataflow functions 19

3.1 Composition of the MLP and the BGD with the main memory and the processor . . 21
3.2 Block diagram of the HLS implementation of the MLP 23
3.3 Block diagram of the HLS implementation of the BGD 25
3.4 Illustration of the bottleneck situation at the computation of the gradients 26
3.5 Sequence diagram of the execution order of the MLP and the BGD 27
3.6 Structure of the test bench . 30
3.7 Performance of the implementation solving the XOR problem 31
3.8 Performance of a network with 1 layer, 128 neurons and ReLU activation 34
3.9 Performance of a network with 3 layers, 64 neurons and ReLU activation 34
3.10 Performance of a network with 1 layer, 128 neurons and sigmoid activation 35
3.11 Performance of a network with 3 layers, 64 neurons and sigmoid activation 35
3.12 Additional latency of the BGD . 36

A.1 Include structure of the HLS project . 44

B.1 MLP and BGD IP-cores in the Vivado block design 45
B.2 Control and debug sub hierarchy for the MLP and the BGD 46
B.3 Example measurement with the ILA to determine the latency on hardware 46

Thilo Wendt Institut ELSYS 39

List of Tables

2.1 Truth table of the desired function . 11
2.2 Signals of the ap ctrl hs interface . 15

3.1 Configuration of the network solving the XOR problem 31
3.2 Configuration of the networks used for performance investigations 32
3.3 IP-core settings applied to all measurements . 32
3.4 Benchmark values for the MLPs . 33
3.5 Additional latencies . 36

Thilo Wendt Institut ELSYS 40

List of Listings

2.1 Basic example of a HLS implementation with optimization potential 15
2.2 Instructing Vitis HLS to apply pipelining to a loop 16
2.3 Instructing Vitis HLS to apply vectorization using loop unrolling 17
2.4 Fully optimized example Vitis HLS implementation 20

3.1 HLS implementation of the computation of the gradients 25

Thilo Wendt Institut ELSYS 41

Bibliography

[1] S. Zhao, F. Blaabjerg, and H. Wang, “An Overview of Artificial Intelligence Applications
for Power Electronics,” IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4633–4658,
Apr. 2021.

[2] T. Schindler and A. Dietz, “Real-Time Inference of Neural Networks on FPGAs for Motor
Control Applications,” in 2020 10th International Electric Drives Production Conference (EDPC),
Dec. 2020, pp. 1–6.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning., The MIT Press, 2016., [Online].
Available: https://www.deeplearningbook.org/ (visited on 04/27/2022).

[4] B. K. Bose, “Artificial Intelligence Techniques: How Can it Solve Problems in Power Elec-
tronics?: An Advancing Frontier,” IEEE Power Electronics Magazine, vol. 7, no. 4, pp. 19–27,
Dec. 2020.

[5] A. Mai, “Modellierung von Drehfeldmaschinen mit künstlichen neuronalen Netzen,” Nurem-
berg Institute of Technology, Nuremberg, Aug. 2021.

[6] Xilinx, “Vitis High-Level Synthesis User Guide (2020.1),” 2020., [Online]. Available: https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1399-vitis-

hls.pdf (visited on 03/21/2022).

[7] S. Wendel, A. Geiger, E. Liegmann, et al., “UltraZohm — A Powerful Real-Time Computa-
tion Platform for MPC and Multi-Level Inverters,” in 2019 IEEE International Symposium on
Predictive Control of Electrical Drives and Power Electronics (PRECEDE), May 2019, pp. 1–6.

[8] Xilinx, “Vitis AI User Guide,” Jul. 2021., [Online]. Available: https://www.xilinx.com/
content/dam/xilinx/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-

vitis-ai.pdf.

[9] Fast Machine Learning Lab. “HLS4ML Documentation,” HLS4ML. (2021), [Online]. Avail-
able: https://fastmachinelearning.org/hls4ml/index.html (visited on 09/22/2021).

[10] K. Lin, “Convolutional Layer Implementations in High-Level Synthesis for FPGAs,” Uni-
versity of Washington, Washington, Jun. 2021., [Online]. Available: https://cds.cern.ch/
record/2776765 (visited on 04/19/2022).

[11] Xilinx, RFNoC HLS NeuralNet, Jul. 2019., [Online]. Available: https://github.com/Xilinx/
RFNoC-HLS-NeuralNet (visited on 04/19/2022).

[12] H. M. Vo, “Implementing the on-chip backpropagation learning algorithm on FPGA archi-
tecture,” in 2017 International Conference on System Science and Engineering (ICSSE), Jul. 2017,
pp. 538–541.

[13] S. Murugan, K. P. Lakshmi, J. Sundar, and K. Mathi Vathani, “Design and Implementation
of Multilayer Perceptron with On-chip Learning in Virtex-E,” AASRI Procedia, 2nd AASRI
Conference on Computational Intelligence and Bioinformatics, vol. 6, pp. 82–88, Jan. 2014.

[14] R. G. Gironés, R. C. Palero, J. C. Boluda, and A. S. Cortés, “FPGA Implementation of a
Pipelined On-Line Backpropagation,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 40, no. 2, pp. 189–213, Jun. 2005.

Thilo Wendt Institut ELSYS 42

https://www.deeplearningbook.org/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1399-vitis-hls.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-vitis-ai.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-vitis-ai.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-vitis-ai.pdf
https://fastmachinelearning.org/hls4ml/index.html
https://cds.cern.ch/record/2776765
https://cds.cern.ch/record/2776765
https://github.com/Xilinx/RFNoC-HLS-NeuralNet
https://github.com/Xilinx/RFNoC-HLS-NeuralNet

Bibliography

[15] N. Afianah, A. E. Putra, and A. Dharmawan, “High-Level Synthesize of Backpropagation
Artificial Neural Network Algorithm on the FPGA,” in 2019 5th International Conference on
Science and Technology (ICST), vol. 1, Jul. 2019, pp. 1–5.

[16] A. A. Bataineh, D. Kaur, and A. Jarrah, “Enhancing the Parallelization of Backpropagation
Neural Network Algorithm for Implementation on FPGA Platform,” in NAECON 2018 -
IEEE National Aerospace and Electronics Conference, Jul. 2018, pp. 192–196.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Second Edition., Cam-
bridge, Massachusetts: The MIT Press, 2018., [Online]. Available: https://web.stanford.
edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf (visited on 04/27/2022).

[18] T. Schindler, L. Foss, and A. Dietz, “Comparison of Reinforcement Learning Algorithms
for Speed Ripple Reduction of Permanent Magnet Synchronous Motor,” in IKMT 2019 -
Innovative Small Drives and Micro-Motor Systems; 12. ETG/GMM-Symposium, Sep. 2019, pp. 1–
6.

[19] M. Nielsen, Neural Networks and Deep Learning., Determination Press, 2015., [Online]. Avail-
able: http://neuralnetworksanddeeplearning.com (visited on 01/14/2022).

[20] Xilinx, “UltraFast Design Methodology Guide for the Vivado Design Suite,” 2020., [Online].
Available: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_
1/ug949-vivado-design-methodology.pdf (visited on 03/22/2022).

[21] J. d. F. Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations of High-Level Syn-
thesis Codes for High-Performance Computing,” CoRR, vol. abs/1805.08288, Nov. 2020.

[22] Xilinx, Vitis Libraries, Sep. 16, 2020., [Online]. Available: https://github.com/Xilinx/
Vitis_Libraries (visited on 11/03/2021).

[23] D. Soni, 100/Cranium, Feb. 5, 2017., [Online]. Available: https://github.com/100/Cranium
(visited on 03/05/2022).

Thilo Wendt Institut ELSYS 43

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
http://neuralnetworksanddeeplearning.com
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug949-vivado-design-methodology.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug949-vivado-design-methodology.pdf
https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis_Libraries
https://github.com/100/Cranium

A HLS Project Structure

The repository contains the following directories:

• include: Header files included in the kernels and the test bench.

– KernelHelper.hpp: Custom dataflow functions to implement the kernels in the direc-
tory kernel.

– MlpContainer.hpp: Forward declaration of the TLF MLP and the simulation wrapper
class MlpContainer. This class offers utilities to simulate the MLP kernel.

– BgdContainer.hpp: Forward declaration of the TLF BGD and the simulation wrapper
class BgdContainer. This class offers utilities to simulate the BGD kernel.

– Settings.hpp: Synthesis time adjustments to the kernel and simulation settings.

– Simulation.hpp: Simply includes the files MlpContainer.hpp, BgdContainer.hpp and
Simulation.hpp as an include wrapper for the main test bench.

• kernel: HLS implementation of the kernels.

– Mlp.cpp: HLS implementation of the MLP kernel.

– Training.cpp: HLS implementation of the BGD kernel.

• test

– Test.cpp: Test bench for MLP and BGD kernel.

Furthermore, the Vitis libraries and the reference implementation Cranium [23] are included as
git submodules. Fig. A.1 shows the include structure of the HLS project. The kernel domain and
the test bench are strictly separated. The container files contain a forward declaration to the TLFs
but the implementations in the KernelHelper.hpp header file are not included in the test bench
in Test.cpp.

Simulation.hpp Test.cpp xf blas.hpp

BgdContainer.hpp BGD() Training.cpp

MlpContainer.hpp MLP() Mlp.cpp

cranium.h Settings.hpp KernelHelper.hpp

include

include

include

declare

declare

implement

implement

include

include
include

include

include

include

Figure A.1: Include structure of the HLS project.

Thilo Wendt Institut ELSYS 44

B Integration in the Vivado Block Design

For the examinations on the IP-cores, the ap ctrl hs has not been mapped to a AXI4-Lite. Instead,
the interface is available as wire ports in the Vivado block design which enables an ILA to display
the signals of the interface. The ap ctrl hs interface has been defined with the following directive.

#pragma HLS INTERFACE ap_ctrl_hs port = return

HLS implements a control interface shown in Fig. B.1. Fig. B.2 shows the sub hierarchy which
contains the AXI GPIOs and the ILA for control and debugging of the IP-cores in hardware.
The ILA uses the ap start signal as a trigger and ap done signals a successful execution. The
timing measurements from section 3.7 have been carried out with the ILA. ap start is asserted
by software from the integrated processor via AXI4-Lite. Fig. B.3 shows an example measurement
with the ILA.

Figure B.1: MLP and BGD IP-cores in the Vivado block design.

Thilo Wendt Institut ELSYS 45

B Integration in the Vivado Block Design

Figure B.2: Control and debug sub hierarchy for the MLP and the BGD.

Figure B.3: Example measurement with the ILA to determine the latency on hardware. The
measurement is triggered by the rising edge of the ap start signal at the sample zero
and the latency is measured with the cursor at the rising edge of the ap done signal.
In this measurement, the latency is 16,581 clock cycles.

Thilo Wendt Institut ELSYS 46

C Development Environment

Within the scope of this project, the following tools and libraries have been used:

• Vits HLS Version 2020.1

• Vivado Version 2020.1

• Vitis IDE Version 2020.1

• Vitis libraries [22]:

– Tag: v2020.1 update1

– Commit hash: 3b8c61d377c9be4695e6b73deeebcb81bd9e90a8

• Cranium [23]:

– Commit hash: 87184ef6acdb7751e9c5c5ea1be3d46bc0d69ee6

• Target Platform: UltraZohm second generation with a Xilinx Zynq UltraScale+ SoC FPGA
no. xczu9eg-ffvc900-1-e

Thilo Wendt Institut ELSYS 47

D Directory Structure of the Archive

This thesis includes an archive with the implementations of this project and relevant literature.
The archive is available on the enclosed CD. The data carrier has the following directory structure:

• arm cortex r5 software: Software version of the UltraZohm project which has been used
to control the IP-cores. In order to work correctly, the corresponding Vivado Platform with
the Xilinx driver files is required. Relevant directories and files for this project:

– ./IP cores/uz mlpHls/: Software driver for the MLP IP-core.

– ./IP cores/uz bgdHls/: Software driver for the BGD IP-core.

– ./sw/uz mlpBgdHls testbench.c: Test bench that has been used to carry out the veri-
fication and performance examination of the IP-cores.

– ./include/uz mlpBgdHls testbench.h: Header file to be included in the main C-
program that declares the test bench function.

• exported ip cores: IP-cores that have been used during the verification and performance
examinations as ZIP files. These files can be imported into the Vivado IP catalog.

• hls code: HLS project as described in Appendix A.

• literature: Relevant literature used in this project.

• measurements: Measurement protocol that contains the results of the performance exami-
nations presented in section 3.7.

• thesis latex: LATEX project of this thesis including a compiled PDF version.

Thilo Wendt Institut ELSYS 48

	Abstract
	Nomenclature
	Introduction
	Related Work
	Project Structure

	Theory
	Reinforcement Learning
	Multilayer Perceptrons
	Batch Gradient Descent
	The XOR Problem
	Programming for Vitis High Level Synthesis
	Vitis HLS Workflow
	Definition of the IP-Core in HLS
	Optimization for FPGA

	Results
	Implementation Constraints
	Implementation of the MLP
	Implementation of the BGD
	Combination of the BGD and the MLP
	Shortcomings
	Functional Verification
	Performance Examination
	Examination of Networks with ReLU Activation
	Examination of Networks with Sigmoid Activation
	Additional Latencies

	Summary and Interpretation

	Summary and Outlook
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Appendices
	HLS Project Structure
	Integration in the Vivado Block Design
	Development Environment
	Directory Structure of the Archive

