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I 

 

Abstract 

The Collatz conjecture is an unsolved number theory problem. We approach the 

question by examining the divisions by two that are performed within Collatz  

sequences. Aside from classical mathematical methods, we use techniques of data 

science. Based on the analysis of 10,000 sequences we show that the number of 

divisions by two lies within clear boundaries. Building on the results, we develop 

and prove an equation to calculate the maximum possible number of divisions by 

two for any given a Collatz sequence. Whenever this maximum is reached, a 

sequence leads to the result one, as conjectured by Lothar Collatz. Furthermore, we 

show how many divisions by two are required for a cycle of a specific length. The 

findings are valuable for further investigations and could form the basis for a 

comprehensive proof of the conjecture. 
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1. Introduction 

1.1 The Problem 

The Collatz conjecture is a well-known number theory problem and is the subject 

of numerous publications.1 Therefore, our description of the topic will be brief. The 

mathematician Lothar Collatz introduced a function g: ℕ → ℕ  as follows: 

(1.1) 

𝑔(𝑥) = {
3𝑥 + 1, 𝑖𝑓 𝑥 ≡ 1 (𝑚𝑜𝑑 2)

𝑥/2, 𝑖𝑓 𝑥 ≡ 0 (𝑚𝑜𝑑 2)
 

The conjecture, as treated in this paper, claims that the above function leads to the 

final result one for every natural starting number, when applied recursively. A series 

of numbers involved in this process is called a Collatz sequence. With an aim to 

contribute to a proof of the conjecture, this paper analyses a central aspect of the 

problem: the divisions by two.2 

1.2 Determining Odd Numbers 

Sultanow, Koch and Cox showed that odd numbers of Collatz sequences can be 

calculated with the following recursive equation:3 

(1.2) 

𝑣𝑛+1 = 3𝑛 ∗ 𝑣1 ∗ ∏ (1 + 
1

3 ∗ 𝑣𝑖
) ∗ ∏ 2−𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

The variable 𝑣1 denotes the first odd number of the sequence, that is, the starting 

value. The variable 𝑣𝑖 symbolises the odd number that is the result of a particular 

iteration.4 The exponent 𝑛 stands for the count of odd numbers that are processed 

by the algorithm. In the further course of this paper we will call the parameter 𝑛 the 

‘length’ of a sequence. The exponent 𝛼𝑖 finally represents the number of divisions 

 
1 An overview is provided by (Lagarias, 2010)  
2 Details on our scientific approach can be found in section A.3. 
3 (Sultanow, Koch, & Cox, 2020, p. 10) 
4 For 𝑛 = 1 this is the starting value 𝑣1. 
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by two that are performed in a specific iteration. Accordingly, the sum of 𝛼𝑖 is the 

count of divisions by two leading from the starting value 𝑣1 to the outcome 𝑣𝑛+1.5 

Let us consider the example v1 = 13 and n = 2. Applying equation 1.2 yields:6 

𝑣2+1 = 32 ∗ 13 ∗ (1 +  
1

3 ∗ 13
) ∗ (1 +  

1

3 ∗ 5
) ∗ 2−7 = 1 

Starting with v1 = 33 for n = 3 we obtain the result: 

𝑣3+1 = 33 ∗ 33 ∗ (1 + 
1

3 ∗ 33
) ∗ (1 + 

1

3 ∗ 25
) ∗ (1 + 

1

3 ∗ 19
) ∗ 2−5 = 29 

Improving readability, we denote the factor (1 +  
1

3∗𝑣𝑖
) with the variable 𝛽𝑖.  

In addition, we generalise the formula by replacing the factor three with the 

variable 𝑘. This will be useful for further analysis and leads us to the following 

generalised version of equation 1.2: 

(1.3) 

𝑣𝑛+1 = 𝑘𝑛 ∗ 𝑣1 ∗ ∏ (1 + 
1

𝑘 ∗ 𝑣𝑖
) ∗ ∏ 2−𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑣𝑛+1 = 𝑘𝑛 ∗ 𝑣1 ∗ ∏ 𝛽𝑖 ∗ ∏ 2−𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

In order to correctly calculate odd numbers with equation 1.3, we must first define 

the halting conditions of the algorithm in the next section. 

1.3 Halting Conditions 

Being compliant with the Collatz conjecture, the algorithms 1.2 and 1.3 halt if at 

least one of the following conditions is fulfilled: 

(1.4) 

1.) 𝑣𝑛+1 = 1 

2.) 𝑣𝑛+1 ∈ {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛} 

 

 
5 For a glossary of notations see section A.4 in the appendix. 
6 The result of the first iteration 𝑣1+1 equals five. 
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When the first condition applies, the Collatz conjecture is true for a specific 

sequence. If the second condition is fulfilled, the sequence has led to a cycle. For 

every starting value, except 𝑣1 = 1, the Collatz conjecture is therefore falsified.7 

Let us consider the example 𝑘 = 3, v1 = 13 and n = 2. Applying equation 1.3 

yields: 

𝑣2+1 = 32 ∗ 13 ∗ (1 +  
1

3 ∗ 13
) ∗ (1 +  

1

3 ∗ 5
) ∗ 2−7 = 1 

In the above example the algorithm halts after two iterations because the first 

condition is fulfilled. If we examine the case 𝑣1 = 1, we realise that the algorithm 

finishes after the first iteration, since both halting conditions are true: 

𝑣1+1 = 𝑣1 = 31 ∗ 1 ∗ (1 +  
1

3 ∗ 1
) ∗ 2−2 = 1 

The sequence stops in the example above due to the result being one. Furthermore, 

the sequence has led to a cycle.  

 
7 This statement refers to the Collatz conjecture in its original form 3𝑣 + 1.  
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2. Boundaries of 𝛂𝐢 

We know that in every iteration of the equations 1.2. and 1.3 at least one division 

by two is performed. This follows from the constraints of the Collatz problem. 

Consequently, we can define the minimum of 𝛼𝑖 with the following condition: 

1 ≤ 𝛼𝑖 

The maximum can be specified in a similarly easy way. According to the halting 

conditions, defined in the previous section, a Collatz sequence finishes when  

𝑣𝑛+1 = 1. The maximum of 𝛼𝑖, hereinafter called 𝛼�̂�, can hence be defined as: 

(2.1) 

2𝛼�̂� = 𝑘 ∗ 𝑣𝑖 + 1 

𝛼�̂� = log2(𝑘) + log2(𝑣𝑖) + log2(𝛽𝑖) 

The theorem above builds on the fact that the expression 2𝛼�̂� must equal the next 

even number (𝑘 ∗ 𝑣𝑖 + 1) in order to lead to 𝑣𝑛+1 = 1. Being greater, the result 

𝑣𝑛+1 would be less than one. The second step inverses the exponentiation of 𝛼�̂� by 

taking the binary logarithm. Appropriately, we replace the operation ‘plus one’ 

by 𝛽𝑖. For a better understanding of the above term, let us consider the example  

𝑘 = 3 and 𝑣1 = 5. In this case theorem 2.1 results in: 

𝛼1 = 𝛼1̂ = 4 = log2(3) + log2(5) + log2 (1 +
1

3 ∗ 5
) 

If a sequence reaches the maximum 𝛼�̂�, it finishes with one, thus verifying the 

Collatz conjecture. If we could prove that every odd number finally leads to this 

maximum for 𝑘 = 3, the Collatz problem would be solved. Summarising, we can 

define the following boundaries for 𝛼𝑖: 

(2.2) 

1 ≤ 𝛼𝑖 ≤ log2(𝑘) + log2(𝑣𝑖) + log2(𝛽𝑖) 

Before we continue, we validate theorem 2.2 empirically. We will do so at various 

points in this paper to avoid obvious errors in our mathematical reasoning. The basis 

for the validation is a sample of 10,000 Collatz sequences. The data set comprises 
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information about sequences for the odd starting numbers 𝑣1 ∈ {1, 3, 5, … , 3999} 

and 𝑘 ∈ {1, 3, 5, 7, 9}. Since we do not know that all generated sequences halt, we 

limited the number of iterations per sequence to 𝑛 = 100. For further details on the 

data set see A.1. 

Unsurprisingly, we found that all values of 𝛼𝑖 in the sample are compliant with 

theorem 2.2.8 In the next section we move on to more sophisticated considerations 

and study the properties of ∏ 2𝛼𝑖𝑛
𝑖=1 . 

  

 
8 Source: Own empirical analysis, see A.1 for details. 
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3. Analysing 𝛂 

3.1 Boundaries of 𝛂 

In equations 1.2 and 1.3, the expression ∏ 2𝛼𝑖𝑛
𝑖=1  represents the divisions by two 

performed by the algorithms. The number of divisions by two can be determined 

with the following formula and will be symbolised by 𝛼: 

(3.1) 

𝛼 = ∑ 𝛼𝑖

𝑛

𝑖=1

 

Based on theorem 2.2 we can define the minimum of 𝛼 as follows: 

𝑛 ≤ 𝛼 

Since we carry out at least one division by two in every iteration of theorem 1.2 and 

theorem 1.3, the minimum of 𝛼 equals the sequence’s length. The maximum value 

is harder to determine. In the first step we derive it empirically from the data set 

mentioned in the previous section. Based on the observed data we formulate the 

hypothesis that the maximum of 𝛼 can be calculated with the following equation: 

(3.2) 

�̂� =  ⌊𝑛 ∗ log2(𝑘) + log2(𝑣1)⌋ + 1 

𝛼 ≤ �̂� 

The hypothesis holds for all Collatz sequences in the empirical data set.9 If a Collatz 

sequence reaches the above formulated maximum, it finishes with one, as 

conjectured by Lothar Collatz. Let us, for example, consider the case 𝑣1 = 13,  

𝑛 = 2 and 𝑘 = 3. Applying theorems 3.2 and 1.3 leads to: 

�̂� =  ⌊2 ∗ log2(3) + log2(13)⌋ + 1 = 7 

𝑣2+1 = 32 ∗ 13 ∗ (1 +  
1

3 ∗ 13
) ∗ (1 +  

1

3 ∗ 5
) ∗ 2−7 = 1 

 
9 Source: Own empirical analysis, see A.1 for details. 
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Throughout the next sections we will formulate a proof of the developed hypothesis 

step by step. 

3.2 Proving �̂� for k=1 

First, we examine the case 𝑘 = 1, where theorem 3.2 can be simplified as follows: 

(3.3) 

�̂� =  ⌊𝑛 ∗ log2(1) + log2(𝑣1)⌋ + 1 = ⌊log2(𝑣1)⌋ + 1 

In order to prove theorem 3.2, we have to demonstrate that the number of divisions 

by two, 𝛼, is less than or equal to the maximum �̂�. This can be achieved by 

analysing the binary representation of Collatz numbers.10 Let us consider the case 

𝑣1 = 25 and 𝑘 = 1 in the decimal system. Applying theorem 1.3 leads to the 

sequence shown in the following table. 

n Variable Decimal Log2 Binary Binary 

Length 

𝜶𝒊 𝜶 Operation 

1 𝒗𝟏 25 4.64 110012 5   +1 

𝒗𝟏 + 𝟏 26 4.70 110102 5 1 1 ∗ 2−1 

2 𝒗𝟐 13 3.70 11012 4   +1 

𝒗𝟐 + 𝟏 14 3.81 11102 4 1 2 ∗ 2−1 

3 𝒗𝟑 7 2.81 1112 3   +1 

𝒗𝟑 + 𝟏 8 3.00 10002 4 3 5 ∗ 2−3 

4 𝒗𝟒 1 1.00 12 1    

Table 1: Binary representation of a Collatz sequence for k=1 

The sequence presented in Table 1 starts with the decimal number 𝑣1 = 25 at  

𝑛 = 1. Subsequently it comprises the odd numbers 𝑣2 = 13, 𝑣3 = 7 and finally  

𝑣4 = 1. In the binary system the sequence starts accordingly with 𝑣1 = 110012. 

 
10 To avoid confusion between decimal and binary numbers, we will label binary numbers with a 

subscripted 2. 
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The binary length of the starting number 𝑙𝑒𝑛(𝑣1) equals five.11 This observation is 

crucial for our proof. For clarification, it is important to note that the length of a 

binary number can be calculated with the following equation:12 

(3.4) 

𝑙𝑒𝑛(𝑣𝑖) = ⌊log2(𝑣𝑖)⌋ + 1 

For example, consider the case 𝑣𝑖 = 13 in decimal, rendered in binary that means 

𝑣𝑖 = 11012. Here, the equation 3.4 leads to the following result: 

𝑙𝑒𝑛(13) = 𝑙𝑒𝑛(11012) = ⌊log2(13)⌋ + 1 = 4 

The comparison of equation 3.4 with theorem 3.3 makes it clear that they are 

identical. This raises the question why the maximum number of divisions by two of 

a Collatz sequence corresponds to the binary length of 𝑣1.13 To answer this, we take 

a closer look at the mechanics of a Collatz sequence in the binary system. 

We start with 𝑣1 = 110012 in the above example. Adding one, we obtain the even 

number (𝑣1 + 1) = 110102. The binary length of 𝑣1 equals the binary length of 

(𝑣1 + 1), which is five. Due to the trailing zero we immediately realise that 

(𝑣1 + 1) is even. A division by two can be performed in the binary system by 

deleting the trailing zero. The result is 𝑣2 = 11012. Adding one again, leads to the 

next even number (𝑣2 + 1) = 11102. Deleting the trailing zero once more, results 

in 𝑣3 = 1112. 

Up to this point we have performed two divisions by two. The parameter 𝛼 therefore 

equals two. The case 𝑣3 = 1112 is very important for our proof. Adding one to 

𝑣3 = 1112 leads to an overflow of the binary number. As a result, we obtain the 

even number (𝑣3 + 1) = 10002, which is a power of two and equals 23 in decimal. 

Knowing that every power of two in a Collatz sequence directly leads to the 

terminal value 𝑣𝑛+1 = 1, we can deduce that the sequence ends after the third 

iteration. 

 
11 With binary length we mean the count of digits of a binary number. 
12 (Sedgewick & Wayne, 2011, p. 185) 
13 The statement is only true for 𝑘 = 1. 
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The binary length 𝑙𝑒𝑛(𝑣3) = 3 increases to 𝑙𝑒𝑛(𝑣3 + 1) = 4 in the final step. This 

situation only occurs once in a Collatz sequence for 𝑘 = 1. Whenever adding one 

to a number 𝑣𝑛 causes an overflow of its binary representation, the result 

(𝑣𝑛 + 1) will be a power of two. The binary length will, in this scenario, increase 

from 𝑙𝑒𝑛(𝑣𝑛) to 𝑙𝑒𝑛(𝑣𝑛) + 1. The sequence will consequently halt. For all other 

cases the following condition applies:14 

(3.5) 

𝑙𝑒𝑛(𝑣𝑛) = 𝑙𝑒𝑛(𝑣𝑛 + 1) > 𝑙𝑒𝑛(𝑣𝑛+1) 

Only the final iteration increases the length of the binary number. In any other case 

the binary length decreases from 𝑣𝑛 to 𝑣𝑛+1. 

Let us now reflect what this implies for the maximum �̂�. We know that the binary 

length of the starting value 𝑣1 can be calculated with equation 3.4. In order to reach 

the final result 𝑣𝑛+1 = 1, starting at 𝑣1, we have to perform the following number 

of divisions by two: 

(3.6) 

𝛼 = �̂� =  𝑙𝑒𝑛(𝑣1) + 1 − 1 = ⌊log2(𝑣1)⌋ + 1 

The equation builds on the binary length of the starting value 𝑙𝑒𝑛(𝑣1). We add one 

to respect the binary overflow in the final iteration. Furthermore, we subtract the 

binary length of the final result 𝑣𝑛+1 = 𝑙𝑒𝑛(𝑣𝑛+1) = 1. No value of 𝛼 can possibly 

exceed this maximum, since �̂� directly leads to the terminal value 𝑣𝑛+1 = 1, halting 

the sequence.15 The above equation thus proves theorem 3.2 for 𝑘 = 1. In the next 

section we will explain why this argumentation is in principle valid for all 𝑘. 

3.3 Proving �̂� for k>1 

Let us now examine the case 𝑘 = 3, which is most interesting because it relates to 

the original Collatz conjecture. The first question we need to address is whether or 

not the principles discussed in the previous paragraph are transferable to this form 

 
14 The condition is only true for k=1. 
15 The following notebook can be used to validate the proof experimentally: 

https://github.com/c4ristian/collatz/blob/v1.0/notebooks/lambda.ipynb 

https://github.com/c4ristian/collatz/blob/v1.0/notebooks/lambda.ipynb
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of the problem. To find an answer, we analyse a sequence, starting with  𝑣1 = 17 

and 𝑘 = 3. The results are displayed in the following table. 

n Variable Decimal Log2 Binary Binary 

Length 

𝜶𝒊 𝜶 Operation 

1 𝒗𝟏 17 4.09 100012 5   ∗ 3 

𝟑𝒗𝟏 51 5.67 1100112 6   +1 

𝟑𝒗𝟏 + 𝟏 52 5.70 1101002 6 2 2 ∗ 2−2 

2 𝒗𝟐 13 3.70 11012 4   ∗ 3 

𝟑𝒗𝟐 39 5.29 1001112 6   +1 

𝟑𝒗𝟐 + 𝟏 40 5.32 1010002 6 3 5 ∗ 2−3 

3 𝒗𝟑 5 2.32 1012 3   ∗ 3 

𝟑𝒗𝟑 15 3.91 11112 4   +1 

𝟑𝒗𝟑 + 𝟏 16 4.00 100002 5 4 9 ∗ 2−4 

4 𝒗𝟒 1 1.00 12 1   NA 

Table 2: Binary representation of a Collatz sequence for k=3 

The example presented in Table 2 reveals that in comparison to the previous case 

𝑘 = 1, the algorithm performs an additional operation, which is the multiplication 

with three. This operation leads to a growth of the binary length when comparing 

𝑣𝑛 to 3𝑣𝑛. The result of the operation can be calculated as follows: 

(3.7) 

𝑙𝑒𝑛(3 ∗ 𝑣𝑛) = ⌊log2(3) + log2(𝑣𝑛)⌋ + 1 

In determining the maximum �̂� for 𝑘 = 3, we have to take the additional binary 

growth into account. With regard to the operation +1 we can utilise the same 

arguments as in the previous section. Whenever adding one leads to an overflow in 

the binary representation of 3𝑣𝑛, the result will be a power of two, halting the 

sequence. The length of (3𝑣𝑛 + 1) will, in this case, increase by one in contrast 



3. Analysing 𝛂 13 

 

to 3𝑣𝑛. This can happen only once in a Collatz sequence, since the resulting power 

of two will lead to a termination. 

In order to prove our hypothesis, we have to adjust equation 3.6 by considering the 

additional binary growth that is caused by the multiplications with three. Therefore, 

we obtain the following formula: 

(3.8) 

𝛼 = �̂� = ⌊𝑛 ∗ log2(3) + log2(𝑣1)⌋ + 1 

The above term proves theorem 3.2 for the case 𝑘 = 3. A closer look makes clear 

that it is not only valid for 𝑘 = 3, but for all 𝑘. In conclusion, we can define the 

following boundaries for the number of divisions by two in a Collatz sequence: 

(3.9) 

𝑛 ≤ 𝛼 ≤ �̂� 

If one shows that every sequence finally leads to �̂�, that means to a binary overflow 

of (3𝑣𝑛 + 1), the Collatz problem would be solved. In the following we will discuss 

the consequences of our findings for the occurrence of cycles and further confirm 

our line of reasoning. 
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4. Occurrence of Cycles 

4.1 Definition 

A promising possibility to falsify the Collatz conjecture in its original form is a 

cycle. We have found such a counterexample if the following halting condition 

from section 1.3 is fulfilled: 

𝑣𝑛+1 ∈ {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛} 

The single known cycle for 𝑘 = 3 is the trivial one starting with 𝑣1 = 1: 

𝑣1 = 1 = 𝑣1+1 = 3 ∗ 1 ∗ (1 +  
1

3 ∗ 1
) ∗ 2−2 

The Collatz conjecture claims that the above example is the only possibility of a 

cycle for 𝑘 = 3.  Based on theorem 1.3 we derive the following condition for the 

occurrence of a cycle within a Collatz sequence:16 

(4.1) 

2𝛼 = 𝑘𝑛 ∗ ∏ 𝛽𝑖

𝑛

𝑖=1

 

For the convenience of the reader, the expression ∏ 𝛽𝑖
𝑛
𝑖=1  will be referred to as 𝛽 

subsequently. Showing that equation 4.1 is true for 𝑘 = 3 would partially prove the 

Collatz conjecture. Yet there would still remain the possibility of an eternally 

growing sequence. This makes theorem 3.2 particularly interesting. 

A major difficulty in analysing cycles in Collatz sequences is that there seems to be 

just one example. This is, however, not true for our generalised form of the problem. 

Let us consider the example 𝑘 = 5 and 𝑣1 = 13. Applying theorem 1.3 leads to a 

cycle of the length 𝑛 = 3: 

 

13 = 53 ∗ 13 ∗ (1 +  
1

5 ∗ 13
) ∗ (1 +  

1

5 ∗ 33
) ∗ (1 +  

1

5 ∗ 83
) ∗ 2−7 

 

 
16 (Sultanow, Koch, & Cox, 2020, p. 11) 
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Setting 𝑘 = 5 and 𝑣1 = 13 in equation 4.1, we obtain the following result after 

three iterations: 

128 = 53 ∗ (1 +  
1

5 ∗ 13
) ∗ (1 +  

1

5 ∗ 33
) ∗ (1 +  

1

5 ∗ 83
) 

To determine the number of divisions by two, which can lead to a cycle, we need 

to investigate the parameter 𝛽 more thoroughly. 

4.2 Analysing 𝜷 

The starting point of our analysis of 𝛽 is theorem 3.2. The formula can be used to 

calculate the maximum possible divisions by two of a Collatz sequence: 

�̂� =  ⌊𝑛 ∗ log2(𝑘) + log2(𝑣1)⌋ + 1 

In section 3 we showed that �̂� relates to the binary length of the starting value 𝑣1. 

Furthermore, the equation accounts for the binary growth, caused by the 𝑛-fold 

multiplication with 𝑘 as well as the final overflow, triggered by the operation +1. If 

a sequence reaches �̂�, it halts at the terminal value 𝑣𝑛+1 = 1. 

In order to learn more about the parameter 𝛽, we take a look at the relation between 

theorems 3.2 and 1.3. We examine the situation in which theorem 1.3 leads to the 

final result one. Consequently, we set 𝑣𝑛+1 = 1 and 𝛼 = �̂�: 

(4.2) 

1 = 𝑘𝑛 ∗ 𝑣1 ∗ ∏ 𝛽𝑖

𝑛

𝑖=1

∗ 2−�̂� 

1 = 𝑘𝑛 ∗ 𝑣1 ∗ 𝛽 ∗ 2−�̂� 

2�̂� = 𝑘𝑛 ∗ 𝑣1 ∗ 𝛽 

�̂� = 𝑛 ∗ log2(𝑘) + log2(𝑣1) + log2(𝛽) 

⌊𝑛 ∗ log2(𝑘) + log2(𝑣1)⌋ + 1 = 𝑛 ∗ log2(𝑘) + log2(𝑣1) + log2(𝛽) 

log2(𝛽) = −𝑛 ∗ log2(𝑘) − log2(𝑣1) + ⌊𝑛 ∗ log2(𝑘) + log2(𝑣1)⌋ + 1 
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For a better understanding of the above term, let us examine two examples. We 

begin with the border case where 𝑘 = 1 and 𝑣1 = 1. Here, equation 4.2 leads to: 

log2(𝛽) = 1 = −𝑛 ∗ log2(1) − log2(1) + ⌊𝑛 ∗ log2(1) + log2(1)⌋ + 1 

𝛽 = 2 

Moreover, we study the example where 𝑘 = 5, 𝑣1 = 19 and 𝑛 = 2. Equation 4.2 in 

this case results in: 

log2(𝛽) = 0.1082 = −2 ∗ log2(5) − log2(19) + ⌊2 ∗ log2(5) + log2(19)⌋ + 1 

𝛽 = 1.0780 

Based on equation 4.2 and the fact that 𝛽 must always be greater than one, we define 

the following boundaries of 𝛽: 

(4.3) 

0 < log2(𝛽) ≤ 1 

1 < 𝛽 ≤ 2 

In the next section we will discuss the implications of theorem 4.3 on the occurrence 

of cycles. 

4.3 Analysing �̅� 

How many divisions by two can lead to a cycle within a Collatz sequence? We can 

derive an equation for this number, subsequently called �̅�, on the basis of 

theorems 1.3 and 4.3. Therefore, we examine the case in which theorem 1.3 leads 

to a cycle by setting  𝑣𝑛+1 = 𝑣1: 

(4.4) 

𝑣1 = 𝑘𝑛 ∗ 𝑣1 ∗ 𝛽 ∗ 2−�̅� 

2�̅� = 𝑘𝑛 ∗ 𝛽 

�̅� = 𝑛 ∗ log2(𝑘) + log2(𝛽) 

�̅� = ⌊𝑛 ∗ log2(𝑘)⌋ + 1 
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The last transformation above is applied since �̅� is a whole number.17 Now that it 

is clear that 1 < 𝛽 ≤ 2, we truncate the fractional part of 𝑛 ∗ log2(𝑘) and add one 

to the result. In a Collatz sequence a cycle can only occur if the number of divisions 

by two equals �̅�. Conversely, this does not imply that reaching �̅� inevitably leads 

to a cycle. The following example demonstrates this. Let us consider the case where 

𝑘 = 3, 𝑣1 = 83 and 𝑛 = 3. Here, theorems 4.4 and 1.3 yield the following result: 

�̅� = 5 = ⌊3 ∗ log2(3)⌋ + 1 

71 = 33 ∗ 83 ∗ (1 +  
1

3 ∗ 83
) ∗ (1 +  

1

3 ∗ 125
) ∗ (1 + 

1

3 ∗ 47
) ∗ 2−5 

Before we continue, we will empirically validate theorem 4.4. Our tool is a linear 

search performed by a Python script. For details on the program see A.2. With the 

script we searched and evaluated cycles in Collatz sequences for the odd starting 

numbers 𝑣1 ∈ {1, 3, 5, … , 9999} and 𝑘 ∈ {1, 3, 5, … , 999}. In order to restrict the 

runtime of the program we limited the length of the investigated cycles to 𝑛 = 100. 

The results of our empirical validation are shown in the following table. 

𝒌 𝒗𝟏. . 𝒗𝒏 𝒏 𝜶 �̅� 

1 (1) 1 1 1 

3 (1) 1 2 2 

5 (1, 3) 2 5 5 

5 (13, 33, 83) 3 7 7 

5 (27, 17, 43) 3 7 7 

7 (1) 1 3 3 

15 (1) 1 4 4 

31 (1) 1 5 5 

63 (1) 1 6 6 

127 (1) 1 7 7 

181 (27, 611) 2 15 15 

181 (35, 99) 2 15 15 

255 (1) 1 8 8 

511 (1) 1 9 9 

Table 3: Cycles in Collatz sequences 

 

 
17 Accordingly, the sum of the mantissas of 𝑛 ∗ log2(𝑘) + log2(𝛽) must be one. 
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As one can see in Table 3, we found several cycles for our generalised form of the 

Collatz problem. All of which comply with theorem 4.4.18 

4.4 Binary growth 

As we have emphasised at several points in this paper, theorem 3.2 builds on the 

binary length of the starting value 𝑙𝑒𝑛(𝑣1). Furthermore, it accounts for the 

maximum binary growth, henceforth denoted with Λ̂. We define binary growth as 

the total number of digits by which the binary length of 𝑣1 increases in a sequence.19 

In order to reach the final result 𝑣𝑛+1 = 𝑙𝑒𝑛(𝑣𝑛+1) = 1, we have to subtract �̂� from 

the sum of the binary length of 𝑣1 and the binary growth:  

(4.5) 

1 = 𝑙𝑒𝑛(𝑣1) + Λ̂ − �̂� 

Λ̂ = �̂� + 1 − 𝑙𝑒𝑛(𝑣1) 

Λ̂ = ⌊𝑛 ∗ log2(𝑘) + log2(𝑣1)⌋ + 1 + 1 − ⌊log2(𝑣1)⌋ − 1 

Λ̂ = ⌊𝑛 ∗ log2(𝑘) + log2(𝑣1)⌋ + 1 − ⌊log2(𝑣1)⌋ 

⌊𝑛 ∗ log2(𝑘)⌋ + 1 ≤ Λ̂ ≤ ⌊𝑛 ∗ log2(𝑘)⌋ + 2 

In the final step the above equation is condensed by subtracting the starting 

value 𝑣1. As a result, we obtain a range for Λ̂. The reason is a possible overflow 

which can be instigated by the expression 𝑛 ∗ log2(𝑘) + log2(𝑣1). Let us examine 

two examples to illustrate this. Starting with the case 𝑘 = 3, 𝑣1 = 13 and 𝑛 = 2 we 

find that the result is equal to the lower limit of  Λ̂: 

Λ̂ = ⌊2 ∗ log2(3) + log2(13)⌋ + 1 − ⌊log2(13)⌋ = ⌊2 ∗ log2(3)⌋ + 1 = 4 

Setting 𝑣1 = 7, 𝑘 = 3 and 𝑛 = 5 leads to the upper limit of the variable: 

Λ̂ = ⌊5 ∗ log2(3) + log2(7)⌋ + 1 − ⌊log2(7)⌋ = ⌊5 ∗ log2(3)⌋ + 2 = 9 

The parameter Λ̂ represents the maximum binary growth of a Collatz sequence. In 

other words, the binary growth of a sequence cannot exceed Λ̂, even if we would 

 
18 Own empirical analysis, see A.2 for details. 
19 This means that Λ̂ does not account for the divisions by two that reduce the binary length of 𝑣1. 
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not perform any divisions by two. Examining theorem 4.5, it is not surprising that 

we find the following relation to theorem 4.4: 

�̅� = ⌊𝑛 ∗ log2(𝑘)⌋ + 1 ≤ Λ̂ 

As we know, a cycle occurs in a Collatz sequence when the condition 𝑣1 = 𝑣𝑛+1 is 

fulfilled. The binary length of the starting number 𝑣1, must therefore grow exactly 

as much as it is reduced by the divisions by two. Thus, for a cycle to occur, the 

number of divisions by two has to be equal to the binary growth. 

One might argue that this reasoning is erroneous since a sequence does not 

necessarily reach the maximum binary growth. We build on theorem 1.3 to show 

that our arguments are valid. By setting 𝑣𝑛+1=𝑣1 we examine the case where the 

growth of the binary length of a sequence is neutralised by the divisions by two: 

𝑣1 = 𝑘𝑛 ∗ 𝑣1 ∗ 𝛽 ∗ 2−𝛼 

2𝛼 = 𝑘𝑛 ∗ 𝛽 

𝛼 = 𝑛 ∗ log2(𝑘) + log2(𝛽) 

Knowing that 1 < 𝛽 ≤ 2, we derive the following limits for the binary growth of a 

cycle, subsequently called Λ̅: 

(4.6) 

𝑛 ∗ log2(𝑘) < Λ̅ ≤ ⌊𝑛 ∗ log2(𝑘)⌋ + 1 

The binary growth of every Collatz sequence that leads to a cycle must lie within 

these boundaries. Due to the fact that �̅� is a whole number, it is obvious that it 

must equal the maximum on the right side of the expression. For all other cases a 

cycle is impossible.  
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5. Summary 

In our paper we have shed light on a central aspect of the Collatz conjecture: the 

divisions by two. We analysed the problem in its original form 3𝑣 + 1 as well as in 

the generalised variant 𝑘𝑣 + 1. Based on mathematical reasoning and empirical 

studies we derived and proved theorems on the occurrence of cycles and the 

termination of sequences. Our reasoning primarily builds on the binary 

representation of Collatz numbers and the underlying operations. Theorem 4.4 

determines the number of divisions by two that can lead to a cycle. The theorem is 

based on the simple truth that a cycle can only occur if the binary growth of a 

sequence is exactly neutralised by the divisions by two. Theorem 3.2. determines 

the maximum number of divisions by two that can be performed in a sequence. If 

one could show that every starting number finally leads to this maximum, the 

Collatz problem would be solved. We are convinced that a profound study of the 

binary mechanics of Collatz sequences will lead to this proof. 

 

 



 

 

A.  Appendix 

A.1 Data Set 

This empirical data set was used to derive and validate theorems 2.2 and 3.2. The 

sample was generated with a Python script and comprises information about 

sequences for the odd starting numbers 𝑣1 ∈ {1, 3, 5, … , 3999} and 𝑘 ∈

{1, 3, 5, 7, 9}.20 Since we do not know that all generated sequences halt, we limited 

the number of iterations per sequence to 𝑛 = 100. In total, the sample contains 

651,159 Collatz numbers, which are not necessarily distinct. This is due to the fact 

that different starting numbers can lead to the same subsequent values. For example, 

both starting values, 𝑣1 = 13 and 𝑣1 = 53 result in the number five. 

A.2 Cycle Finder 

This Python script was used to validate theorem 4.4.21 The program performs a 

linear search for the odd starting numbers 𝑣1 ∈ {1, 3, 5, … , 9999} and 𝑘 ∈

{1, 3, 5, … , 999}. To restrict the runtime of the script, we limited the length of the 

investigated cycles to 𝑛 = 100. Furthermore, the results are not persisted. In order 

to reproduce our findings, the program must be executed again. 

A.3 Scientific Approach 

The contents published in this paper have been achieved with an interdisciplinary 

approach. Not surprising, we applied classic mathematical theory and reasoning. 

Since we are convinced that the Collatz problem cannot be solved with classical 

maths alone, we additionally used techniques of data science. We combined the two 

fields in different ways. On one hand, we analysed sequences and related features 

empirically, in order to derive new formulas and theorems. On the other hand, we 

used data science to validate our proofs. As suggested by Karl Popper, we tried to 

falsify them with counterexamples. In the course of our work, we have learned that 

the combination of the two fields leads to a very efficient working mode. This might 

be the topic of another paper. 

 
20 https://github.com/c4ristian/collatz/blob/v1.0/run_alpha_export.py 
21  https://github.com/c4ristian/collatz/blob/v1.0/run_cycle_finder.py 

https://github.com/c4ristian/collatz/blob/v1.0/run_alpha_export.py
https://github.com/c4ristian/collatz/blob/v1.0/run_cycle_finder.py


 

 

A.4 Glossary of Notations 

Notation Description 

𝑣1 First odd number of a Collatz sequence, also referred to as starting 

value 

𝑣𝑖 Odd number that is the result of a particular iteration. In the first 

iteration this is the starting value 𝑣1 

𝑘 Factor that is multiplied with odd numbers; equals three in the 

original Collatz conjecture 

𝑛 Count of odd numbers in a sequence, also referred to as the 

sequence's length 

𝛽𝑖 Symbolises the term (1 +  
1

𝑘∗𝑣𝑖
)   

𝛽 Product of all 𝛽𝑖 

𝛼𝑖 Represents the number of divisions by two that are performed in a 

specific iteration 

𝛼 Number of divisions by two that leads from the starting value 𝑣1 to 

the result 𝑣𝑛+1 

𝛼�̂� Maximum possible number of divisions by two in a specific iteration 

�̂� Maximum possible number of divisions by two in a Collatz sequence 

�̅� Number of divisions by two that is required for a cycle  

Λ̂ Maximum binary growth of a Collatz sequence 

Λ̅ Binary growth that is required for a cycle 
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