
What Today’s Serious Cyber Attacks on
Cars Tell Us: Consequences for Automotive

Security and Dependability

Markus Zoppelt and Ramin Tavakoli Kolagari

Nuremberg Institute of Technology, Hohfederstr. 40, 90489 Nuremberg, Germany
{markus.zoppelt,ramin.tavakolikolagari}@th-nuernberg.de

Abstract. Highly connected with the environment via various interfaces,
cars have been the focus of malicious cyber attacks for years. These
attacks are becoming an increasing burden for a society with growing
vehicle autonomization: they are the sword of Damocles of future mo-
bility. Therefore, research is particularly active in the area of vehicle IT
security, and in part also in the area of dependability, in order to develop
effective countermeasures and to maintain a minimum of one step ahead
of hackers. This paper examines the known state-of-the-art security and
dependability measures based on a detailed and systematic analysis of
published cyber attacks on automotive software systems. The sobering
result of the analysis of the cyber attacks with the model-based technique
SAM (Security Abstraction Model) and a categorization of the examined
attacks in relation to the known security and dependability measures
is that most countermeasures against cyber attacks are hardly effective.
They either are not applicable to the underlying problem or take effect
too late; the intruder has already gained access to a substantial part of the
vehicle when the countermeasures apply. The paper is thus contributing
to an understanding of the gaps that exist today in the area of vehicle
security and dependability and concludes concrete research challenges.

Keywords: Automotive Security · Automotive System Architecture ·
Dependability · Model-Driven Engineering Methodologies

1 Introduction

The development of automobiles has ever been a subject to constant change. None
of these changes, however, were as striking as the incorporation of software. Since
the turn of the millennium, scientific contributions on software security of cars
have been published [5, 13, 37]. Earlier publications are practically non-existent
due to the scarcity of software in vehicles back then. One of the first systematic
analyses of attacks on automotive (software) security [38, p. 6f] describes the
prevailing attacks in the automotive sector as either theft or modification of
critical components: for example, an attacker would like to achieve financial
gain by stealing the car or valuable components. Modification refers to the car
owner that would like to change components (tuning), for example in order

2 M. Zoppelt et al.

to increase the value of the car (reduced mileage) or decrease it for taxation
reasons (increased mileage). The analysis also mentions that attackers want to
steal competitors’ expertise and intellectual property. The cyber attacks against
vehicles presented in this paper show that the attack potential has increased
considerably in the last decade due to the interconnectivity and architecture of
modern vehicles. The described attack motivations and attacks from the early
days of the rise of software in vehicles make up only a small fraction of today’s
hackers’ motivations and attacks. In comparison to those of the past, attacks on
modern vehicles are particularly worrying because attackers can take control of
the entire vehicle. This often requires no or only short physical access. Our society,
which is on the threshold of autonomous mobility, takes this challenge seriously.
Therefore, research is very active in the field of vehicle IT security and partly
also in the field of functional safety (dependability) in order to develop effective
countermeasures. Cyber attack protection does not initially imply dependability;
this paper will argue, though, that at the interface between dependability and
security research, innovative protection mechanisms emerge just as capable of
providing protection against malicious attacks as established security measures.
The countermeasures published so far are manifold adaptations of classical IT
security approaches in the area of automotive security, for example [3, 4, 7, 15, 18,
19, 23, 26, 30].

The remainder of this paper is structured as follows: Section 2 reviews the most
effective attacks on automotive software systems. In Section 3 we describe typical
automotive security and dependability mechanisms and analyse their protection
potential with respect to the published attacks described earlier. Section 4 gives
an overview of related work in this field. In our conclusion in Section 5, we provide
indications for future research challenges in the area of automotive security and
dependability.

2 Attacks on Automotive Software Systems

In this section we first present the Security Abstraction Model (SAM) [40] and the
Common Vulnerability Scoring System (CVSS) [20] for evaluating and analysing
attack vectors on automotive software systems. Afterwards, we give an overview
of today’s serious attacks on modern, highly connected vehicles.

2.1 SAM and CVSS

In an earlier publication, we introduced SAM, a Security Abstraction Model for
automotive software systems. SAM allows for a security analysis of automotive
attack vectors. Systematic security analyses can be used to quantify the required
effort for a potential attack. The approach tightly couples security management
and model-based systems engineering by an abstract description of automotive
security modeling principles. The resulting SAM language specification is based on
security requirements elicited from common industrial scenarios. It is a suitable
solution for representing attack vectors on vehicles and provides a thorough
security modeling for the automotive industry. SAM has a close connection to

Consequences for Automotive Security and Dependability 3

the architecture description via the coupling of Item from the architecture model.
SAM attack models express all important criteria of attack vectors—from an
adversary’s motivation up until a breach—to allow for system’s modeling in an
early software engineering phase. Besides attack motivations, SAM also describes
all intrinsic and temporal properties of an attack, e.g., impact on security goals
(confidentiality, availability, integrity, etc.), attack complexity, affected item
and the attackable property. SAM can be used with generic security scoring
systems for attack rating like, e.g., the Common Vulnerability Scoring System
(CVSS). The CVSS is an acclaimed industry standard for rating vulnerabilities
in computer systems and proposes three different metric groups for calculating
the vulnerability scores. The Base Metric Group reflects the intrinsic properties
of an attack: from SAM’s automotive-oriented perspective, this group therefore
indicates the characteristics that result when the attack in question is aimed at the
automotive domain in general. The Temporal Metric Group allows for adjustment
of the score after more information of the exploited vulnerability is available.
The CVSS provides an online calculator [1] where specific vulnerabilities can be
referenced with a unique CVSS vector string. We will provide those vector strings
below every SAM model of the respective attack. Readers who are interested in the
attack properties of specific attacks are able to check them on the online calculator.
The additional benefit of having SAM models compared to directly giving the
properties and a vulnerability score is that not only the CVSS (or scoring systems
in general) is used, but also the possibility to construct attack trees via sub-
attacks and follow-up attacks. SAM is also a method for hierarchical processing
of attack vectors. In terms of substance, this goes beyond the classic attack rating.
SAM makes the scoring system available to the software architect or in other
words: SAM’s strength lies in its ability to integrate with existing automotive
architectures. What is brought together are architectural considerations with
pure security considerations as regards the attack itself (attack vectors that can
be derived from it, motivations, target areas) and all scoring systems that are
known, which can derive all necessary information from the properties.

2.2 Overview of the Attacks

Scientific contributions on software security in cars publish a large number of
attacks on automotive software systems. Table 1 gives an overview of the most
serious of the published attacks on modern, highly connected vehicles. The
selection of the attacks was made strictly according to the following attack
characteristics: The selected attacks 1) are aiming at a broad range of security
goals, ideally all security goals, and 2) have high severity levels (CVSS Temporal
Score greater than 4.0). The CVSS Vector String is omitted in the table, but is
shown below each of the figures of the attack models later in this paper. For the
purposes of this study, we differentiate between gateway attacks and follow-up
attacks. Gateway attacks usually change the extent of a vulnerability and typically
serve as door openers, enabling the adversary to launch one or more follow-up
attacks. A typical follow-up attack would be to reverse Controller Area Network
(CAN) bus messages to learn how the vehicle’s Electrical Control Units (ECUs)

4 M. Zoppelt et al.

Table 1. The most serious attacks, sorted by CVSS [20] Temporal Score

Attack AttackableProperty Item Score

Tesla Remote Control Webkit Browser Autopilot ECU 8.0 / 7.2
SecurityAccess via UDS Substandard ciphers Body Control Module 7.1 / 6.7
CAN Message Injection (Multiple) Pow. Steer. Contr. Mod. 7.0 / 6.5
BMW Remote Diagnostics NBT Backdoor Infotainment Domain 7.1 / 6.4
Control via OBD Injection Clear CAN traffic Diagnostics 7.7 / 6.3
Telematics Attack SSH, SMS Telematics Control Unit 6.4 / 6.1
Remote Keyless Entry Rolling Code Remote Keyless Entry 5.7 / 5.4
CAN DoS Attack CAN Protocol Any CAN bus 4.6 / 4.5

communicate and injecting malicious messages into the system. Some follow-up
attacks are just as trivial as starting Denial-of-Service (DoS) attacks. Many
follow-up attacks are fairly high-level though, e.g., remotely driving/steering the
car, disturbing functions of the vehicle or disabling driver-assisting systems.

2.3 Tesla Remote Control Attack

One of the most serious attacks is the Tesla Remote Control Attack [24, 25, 35].
This gateway attack enables an adversary to break into the AutoPilot ECU (APE)
via the Webkit Browser of the infotainment unit. The researchers of Tencent
Keen Security Lab [35] have demonstrated how to remotely control and steer
the vehicle, disturbing the autowipers by confusing the machine learning (ML)
component with a technique called adversarial examples [11, 29] and eliminating
the lane detection of the vehicle. The following is a brief explanation of the entities
shown in Figure 1: The adversary in this scenario is a remote attacker with the
attack motivation to harm car occupants by crashing the vehicle. The attack
is possible when the mode of the vehicle is “Slow or Standing”. The exploited
vehicle feature is Tesla’s Autopilot, specifically the item AutoPilot ECU (APE).
The exploited vulnerability is the Webkit browser framework of the infotainment
unit which offers the JSArray function. This function is the attackable property
the adversary is looking for, i.e., his anchor of the attack. After analysing with
the attack properties via the CVSS metrics, one can calculate the base score and
temporal score of the attack and derive the requirement: code signing protection
for over-the-air (OTA) updates.

For the remaining attacks in this paper, further textual explanation of the
models is omitted. Readers might refer to the explanation of the entities of this
attack or look at SAM / CVSS references.

2.4 Security Access via UDS Attack

Many security-sensitive preferences or functions of a vehicle are secured via the
Unified Diagnostic Service (UDS). Getting advanced security access to an ECU
makes it possible for an adversary to fully reprogram the respective ECU or
get confidential information out of the ECU’s secure memory, what makes this

Consequences for Automotive Security and Dependability 5

Fig. 1. SAM model of Tesla Remote Control Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H/E:P/RL:O/RC:C

attack a gateway attack. In contrast to the Tesla Remote Control attack, the
attack motivation is product modification. The Security Access via UDS Attack
as shown by den Herrewegen [12] is illustrated in the SAM model in Figure 2.

2.5 CAN Message Injection Attack

Miller and Valasek’s [36] attack on an unaltered passenger vehicle [21] was
widely discussed in research and press. A CAN Message Injection Attack [22]
is one of the logical consequences after a successful gateway attack. After an
adversary has gained access to the powertrain, he can reverse engineer the
messages communicated via the bus and inject his own malicious messages of
choice. Once an adversary has the ability to send arbitrary network messages
(e.g., via CAN) he is able to control the braking system, engine behaviours or the
air vents, (un-)lock the doors, etc. Therefore, there is a strong need to secure the
vehicle before the adversary can even gain access to the bus as then it is already
too late. Figure 3 illustrates the CAN message injection attack in SAM.

2.6 BMW Remote Diagnostics Attack

The BMW Remote Diagnostics Attack [34] is the second attack by Tencent Keen
Security Lab on our list. It is a hybrid of the Tesla Remote Control attack and
the UDS Security Access attack. The researchers were able to control a BMW

6 M. Zoppelt et al.

Fig. 2. SAM model of Security Access via UDS Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:P/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H/E:P/RL:U/RC:C

Fig. 3. SAM model of CAN Message Injection Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H/E:F/RL:O/RC:C

Consequences for Automotive Security and Dependability 7

after exploiting a back door in the in-vehicle infotainment system (also known as
NBT Head Unit). This was possible because UDS was not locked at high speed.
This gateway attack is shown as a SAM model in Figure 4.

Fig. 4. SAM model of BMW Remote Diagnostics Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:A/AC:H/PR:L/UI:N/S:C/C:L/I:L/A:H/E:P/RL:O/RC:C

2.7 OBD Injection Attack

On-board diagnostics (OBD) is a vehicle’s self-diagnostic and reporting capability
for vehicles. Over the OBD port, which is easily accessible inside the vehicle,
many simple attack vectors are possible, especially in older car models, where
OBD injection attacks [39] are astoundingly easy to perform gateway attacks.
The SAM model of such an attack is omitted here. CVSS v3.0 Vector String:
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H/E:U/RL:W/RC:U

2.8 Telematics Attack

A large part of the remote attack surface of a modern vehicle is determined
by telematics units. A potential adversary might use software defined radios or
similar tools for remote exploitation of said telematics to obtain access to a device
connected to the CAN bus or similar powertrain as a gateway attack. Foster [8] de-
scribes an example telematics attack. The SAM model is omitted here. CVSS v3.0
Vector String: CVSS:3.0/AV:N/AC:H/PR:L/UI:N/S:U/C:H/I:L/A:L/E:P/RL:U

8 M. Zoppelt et al.

2.9 Remote Keyless Entry Attack

Almost every modern vehicle has the ability for “keyless entry” or “keyless start
engine”. Those convenience features raise security risks as they provoke a gateway
attack as shown by Garcia et al. [9]. With common hardware and low-level
software skills, potential adversaries are able to unlock, open or start foreign
vehicles after capturing and decoding radio signals for a Remote Keyless Entry
Attack. The SAM model for this attack is omitted here as this particular attack
is extensively described in various literature. CVSS v3.0 Vector String:
CVSS:3.0/AV:A/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N/E:H/RL:W/RC:R

2.10 CAN DoS Attack

One of the simplest but highly safety-critical follow-up attack is a CAN DoS
Attack as described by Palanca et al. [28]. Due to the CAN protocol definition,
CAN bus messages are arbitrated by ID. Lower IDs, i.e., with more starting
zeros, have higher priority than higher IDs. In a simple sense, spamming the
bus with messages that have a lower ID leads to network constipation and is the
equivalent to a classic denial-of-service attack. The SAM model for this attack
is omitted here as well, as its vulnerability and attackable property are widely
known. CVSS v3.0 Vector String:
CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:H/RL:W/RC:C

3 Countermeasures and Analysis

In this section we describe typical automotive security and dependability mecha-
nisms and analyse their protection potential with respect to the published attacks
described in Section 2. The result of the analysis of the relationship between
attacks on vehicle security and the protection potential of countermeasures is
presented in Table 2. It shows that message cryptography, as a popular repre-
sentative of software security, is only effective for a small part of the attacks as
a protection measure. Lesser known representatives can partially compensate,
but overall, it can be stated that there are no adequate security protection
mechanisms for some serious and well-known attacks on automotive software.

3.1 Message Cryptography (MC)

Message cryptography entails encryption, authentication and verification of mes-
sages communicated over the vehicle’s bus, e.g., CAN, LIN, Flexray, Automotive
Ethernet, etc. Message cryptography is an immensely large field of research and
a big amount of apparent solutions does exist [3, 4, 19, 23, 26, 30]. Unfortunately,
reliable and adaptive key distribution in heterogeneous automotive bus networks
is a difficult challenge. Keys need to be distributed, updated and revoked in case
of some soft- or hardware-updates. For some attacks, even properly implemented
cryptography would offer just a partial protection, e.g., authenticity for CAN
messages but no confidentiality due to the network topology. If an attacker gains
access to an ECU, she might also retrieve the cryptographic keys. Cryptographi-
cally verifying messages would pose an obstacle for connecting rogue devices to
the bus but would not mitigate remote attack scenarios.

Consequences for Automotive Security and Dependability 9

3.2 ID Hopping (IDH)

ID Hopping is a technique to obfuscate network bindings or messages by changing
(“hopping”) between arbitration IDs without changing the actual arbitration.
Order preserving encryption (OPE) is also considered as ID Hopping. This
technique is also widely explored in the research field of automotive network
security [15, 18, 19] and hinders adversaries to easily reverse engineer network
messages.

3.3 Challenge and Response (CR)

Challenge and response is a common technique used widely in the security
and network domain, though it is disturbingly unpopular in the automotive
domain. Physical car keys (keyfobs) mostly still use a rolling code system when
transmitting, enabling adversaries with mediocre skills and a software defined
radio to perform replay or relay attacks. Those could easily be mitigated by using a
challenge and response mechanism. Unfortunately, keyfobs are not equipped with
the necessary hardware components due to financial reasons in the automotive
industry.

3.4 ECU Hardening (ECUH)

ECU Hardening stops the adversary to change the state of the flashed software
in any way. A popular application of ECU hardening is “Autonomous Security”
and “Karamba Carwall” by Karamba Security [7] which hardens ECUs based
on factory settings, eliminating the risks of false positives, detection delays, and
performance drag issues. ECU hardening relies heavily on static analysis of the
factory settings and firmware. It seems that this security mechanism is not really
inquired by researchers but popular in the industry, as it is easy to implement
and does not require increased effort.

3.5 Run Time Correctness (RTC)

Synergies between safety and security are exploited in the area of fault tolerance
and software protection by tamper-tolerant software [16]. Shared approaches are
developed to get programs run-time error free [10, p. 9ff]. While dependability aims
at protection against systematic errors and random errors caused by malfunction
or unintended interference, security additionally wants to protect against targeted,
intended and possibly malicious manipulation. According to Kriha [17, p. 13f],
security attacks are input or output related. This can be made verifiable by,
e.g., validation frameworks. It must be stated, though, that the availability of
complete frameworks for validation is generally rather deficient. Today’s security
vulnerabilities rarely lie in cryptographic algorithms or protocols but are almost
always implementation-related, e.g., wrongly chosen (weak) ciphers or keys,
memory safety, the inability to update software over-the-air, wrongly configured
network interfaces, and more. Lists like the “Recent Vulnerability Notes” [2]
demonstrate that vividly. Techniques like Voting could mitigate attacks that
happen at random or are bound by probability, e.g., botnet attacks.

10 M. Zoppelt et al.

3.6 Integrity Protection (IP)

Dependability measures insist on maintaining integrity through redundancy
checks, i.e., repeatedly or concurrently sending messages on the bus, checking
ECU state, double computing, etc. Integrity checks for data through redundancy
requires an adversary to compromise more individual pinpoints in order to break
the security goal integrity.

3.7 Virtualisation (V)

Virtualisation as a dependability and security measure, e.g., running applications
of different automotive safety integrity levels (ASIL) on different virtual computers
can be used to virtually draw a line between applications and networks to seal
off applications who are safety-critical from functionally unrelated applications.
Glas et al. [10, p. 12f] show that virtualisation may serve as a measure for both
dependability and security. Rosenstatter [32, p.4] and Othmane [27] also describe
virtualisation and Virtual Local Area Networks (VLANs) as a possible solution
for access control. The biggest benefit of virtualisation is, that it limits the
scope of a vulnerability to U (unchanged), as it is isolated in the virtualised
sandbox. The scope of a vulnerability is changed, if an attack impacts more
than the vulnerable component. That means, that if the scope is unchanged, an
attacker is not able to start a successful follow-up attack. Furthermore, lean use
of virtualisation could obliterate lacking CAN authenticity, as standard CAN
messages alone have no assignable source identifier.

3.8 Analysis and Mapping of Countermeasures on Attacks

The analysis of the respectively selected attacks (cf. Section 2.2) does not have to
be very detailed in order to reveal the obvious mismatch between largely proposed
countermeasures and their effective protection in practice. In this section we
describe this mentioned mismatch by mapping effective countermeasures proposed
by academic research to the selected attacks. This mapping shows that the most
researched countermeasure (MC) is only effective in less than half of the attacks.
The first discussed attack (Tesla Remote Control Attack) is analyzed both in
text and in an illustrating figure. Due to the strict space limits, illustrations for
the other attacks are omitted, but the analyses are always textually described.

The essential element of the Tesla Remote Attack is the access to the APE
via exploiting Webkit, which must be capable of being updated from offboard.
MC cannot help here, because it is about the exchange of an entire component.
ECUH could completely prevent this attack, but does not offer any flexibility
with regard to updates. V could at least limit the scope of the vulnerability from
an unacceptable C to a U (see CVSS), requiring much more attack effort.

Although, some countermeasures prevent adversaries from accessing or suc-
cessfully attacking a system, some attacks, engineer the attack vector around
the countermeasure applied by targeting a sub-component of a system via un-
protected communication channels and systematically traverse the system from

Consequences for Automotive Security and Dependability 11

Fig. 5. Adversary attacking an ECU by-passing countermeasures (a) via an unprotected
communication channel (b). ECUH (b’) would have prevented the attack

the inside out. For example, in the Tesla remote attack, the adversaries could
not directly access the secret key embedded in the ECU via network (a) so they
first compromised the unprotected and vulnerable webkit framework (b) and got
access to the key by-passing other countermeasures. In the (b) scenario, MC is
used but does not stop the attacker because it is used as intended. IDH cannot be
used because the channel is not a bus. CR cannot be applied either. If ECUH was
in place for the (b) scenario then it would have prevented the attack (illustrated
as (b’) in Figure 5). The dependability measures are not depicted because they
are too complex to be captured in an illustrating figure.

The SecurityAccess via UDS attack is possible because a weak cipher for
the security challenge was chosen. A strong cipher in the UDS protocol would
mitigate such an attack. In addition, IP could at least determine, that an ECU
has been tampered with as integrity checks fail.

CAN message injection is one of the most researched attacks because the
topology of the CAN bus allows rogue participants of the network to send
arbitrary messages to the bus. Unfortunately, MC quickly reaches its limits
due to the complex network topology and then can only if at all be used for
partial encryption or authentication. V, however, could virtually separate critical
applications, thereby mitigating cross-ECU message injection, maybe even offering
some authenticity on top of the CAN protocol. V can also help in the case of
the BMW Remote Diagnostics Attack for the same reason. Plus, ECUH would
prevent attackers from tampering with the ECU firmware through diagnostic
protocols. RTC can be used to limit the ability to corrupt software functions
over diagnostic protocols.

The Control via OBD Injection attack shows many parallels to the CAN
Message Injection attack, though it is in this case possible to prevent the attack
with IDH or IP. IDH makes it harder for the attacker to reverse-engineer and
send valid messages to the car, while IP would recognize that some injected
messages are outliers.

Telematics attacks are very similar to CAN Message Injection attacks, except
that their gateway attack vector, i.e., the actual telematics unit, can be secured
better with MC, because their protocols are not entirely automotive specific.

12 M. Zoppelt et al.

The Remote Keyless Entry attack is actually already a solved problem, using
CR. Unfortunately, industry (hardware) pricing policies prevent this solution
from being used. Coming up with a software-only solution is a much sought-after
research challenge.

CAN DoS attacks are possible because of CAN’s arbitration characteristic.
They cannot be stopped with MC or other security countermeasures. It is possible,
though, to use RTC techniques, e.g., watchdogs to prevent such attacks.

Table 2. Analysis of automotive security and dependability countermeasures with
respect to attacks against automotive software systems. We distinguish between security
(left) and dependability (right) countermeasures. The X indicates a feasible protection;
(X) indicates a partial protection

Attack MC IDH CR ECUH RTC IP V

Tesla Remote Control [24, 25, 35] X X X X

SecurityAccess via UDS [12] X (X)

CAN Message Injection [21, 22, 36] (X) X

BMW Remote Diagnostics [34] X X X

Control via OBD Injection [39] X X X X

Telematics Attack [8] X X

Remote Keyless Entry [9] X

CAN DoS Attack [28] X

Table 2 shows that MC—where the majority of research is conducted—does
not mitigate all of the top attacks. The attacks and countermeasures discussed in
up-to-date research papers are—while being interesting in academia—not feasible
in industrial automotive software. The attacks most successful in practice are
usually not prevented by typical published security research results. Fortunately,
dependability measures (RTC, IP, V) would offer some remarkable protections
against the majority of our investigated attacks.

4 Related Work

Rosenstatter and Olovsson [32] provide a mapping between automotive security
mechanisms and security levels in great detail. Auernhammer et al. [6] use a
systematic mapping of published attacks on ML components on the security
goals violated in autonomous vehicles. Their research shows that accountability
(for ML) is not covered by literature as there have not yet been any attacks
published, because accountability for ML is difficult to attack and the security
goal is, therefore, not compulsory. Moreover, the work of Ray [31] lists practice
and challenges in automotive security, discussing the need for extensibility and
the constraints and considerations involved in achieving it. Huber’s survey [14]
shows how organizations from the automotive industry in the Euroregion tackle
the challenge of integrating dependability and security aspects during system
development. Their conclusion is that the utilization of a conceptual model
unifying relevant documentation artifacts from requirements engineering, system
modeling, risk assessment and evidence documentation could address these issues.

Consequences for Automotive Security and Dependability 13

We addressed this by using SAM as a modeling technique. Finally, the six-
step model for integrating autonomous vehicle safety and security analysis by
Sabaliauskaite [33] achieves and maintains integration and alignment among
safety and security artefacts throughout the entire AV life-cycle.

5 Conclusion

In this paper, we analyzed today’s serious attacks with the model-based tech-
nique SAM and ranked them with the CVSS. The result of our study shows
a revealing spectrum that research can actively take up and investigate. It is
interesting that the majority of today’s automotive security research is focused
on (message) cryptography, which does not mitigate an essential part of the top
attacks, although many other countermeasures offer advantages that should not
be neglected. A highly topical research challenge is flexible extensibility, which at
the same time provides protection against arbitrary manipulation (like ECUH)
and would generally be a helpful approach for OTA updates. Moreover, it turned
out that virtualisation is a promising countermeasure against attacks. A possible
research challenge is a lean system for (embedded) virtualisation, as it limits the
scope of the vulnerability and can obliterate some of the weaknesses in automotive
security, e.g., CAN authenticity. Future research challenges should also focus on a
combination of security and dependability countermeasures to provide adequate
and flexible protection against cyber attacks on cars, e.g., mixing ECUH with
extensibility or updatability enabled via cryptography. Autonomous vehicles in
the future will probably be more susceptible to attacks than today’s cars already
are. Our work aims to offer the necessary insights and fundamentals to continue
conducting relevant research in this domain.

Acknowledgment

This work is funded by the Bavarian State Ministry of Science and the Arts in
the framework of the Centre Digitisation.Bavaria (ZD.B).
M.Z. was supported by the BayWISS Consortium Digitization.

References

1. Common Vulnerability Scoring System Version 3.0 Calculator.
https://www.first.org/cvss/calculator/3.0, accessed: 2019-05-14

2. Vulnerability Notes Database. http://www.kb.cert.org/vuls/, accessed: 2014-10-29
3. vatiCAN: Vetted, authenticated CAN bus. In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). vol. 9813 LNCS, pp. 106–124 (2016)

4. Agrawal, M., Huang, T., Zhou, J., Chang, D.: CAN-FD-Sec: Improving Security
of CAN-FD Protocol. In: Hamid, B., Gallina, B., Shabtai, A., Elovici, Y., Garcia-
Alfaro, J. (eds.) Security and Safety Interplay of Intelligent Software Systems. pp.
77–93. Springer International Publishing, Cham (2019)

14 M. Zoppelt et al.

5. Amendola, S.: Improving automotive security by evaluation—from security health
check to common criteria. White paper, Security Research & Consulting GmbH
176 (2004)

6. Auernhammer, K., Tavakoli Kolagari, R., Zoppelt, M.: Attacks on Machine Learning
: Lurking Danger for Accountability. In: Proceedings of the AAAI Workshop on
Artificial Intelligence Safety 2019 co-located with the Thirty-Third AAAI Conference
on Artificial Intelligence 2019 (AAAI 2019). p. 9. Honolulu, Hawaii (2019)

7. Barzilai, D.: Autonomous Security pp. 1–14 (2018)
8. Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and Vulnerable: A Story

of Telematic Failures. 9th USENIX Workshop on Offensive Technologies (WOOT
15) (2015)

9. Garcia, F.D., Oswald, D., Kasper, T., Pavlidès, P.: Lock It and Still Lose It—On
the (In)Security of Automotive Remote Keyless Entry Systems. Proceedings of the
25th USENIX Security Symposium pp. 929—-944 (2016)

10. Glas, B., Gebauer, C., Hänger, J., Heyl, A., Klarmann, J., Kriso, S., Vembar, P.,
Wörz, P.: Automotive safety and security integration challenges. Automotive-Safety
& Security 2014 (2015)

11. Hayes, J., Danezis, G.: Machine Learning as an Adversarial Service: Learning
Black-Box Adversarial Examples 2 (2017)

12. den Herrewegen, J., Garcia, F.D.: Beneath the Bonnet: A Breakdown of Diagnostic
Security. In: European Symposium on Research in Computer Security. pp. 305–324.
Springer (2018)

13. Hubaux, J.P., Capkun, S., Luo, J.: The security and privacy of smart vehicles. IEEE
Security & Privacy (3), 49–55 (2004)

14. Huber, M., Brunner, M., Sauerwein, C., Carlan, C., Breu, R.: Roadblocks on the
Highway to Secure Cars: An Exploratory Survey on the Current Safety and Security
Practice of the Automotive Industry. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.)
Computer Safety, Reliability, and Security. pp. 157–171. Springer International
Publishing, Cham (2018)

15. Humayed, A., Luo, B.: Using ID-Hopping to Defend Against Targeted DoS on CAN.
Proceedings of the 1st International Workshop on Safe Control of Connected and
Autonomous Vehicles - SCAV’17 pp. 19–26 (2017)

16. Jakubowski, M.H., Saw, C.W.N., Venkatesan, R.: Tamper-Tolerant Software: Model-
ing and Implementation. In: Takagi, T., Mambo, M. (eds.) Advances in Information
and Computer Security. pp. 125–139. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

17. Kriha, W., Schmitz, R.: Sichere Systeme: Konzepte, Architekturen und Frameworks.
Springer-Verlag (2009)

18. Lukasiewycz, M., Mundhenk, P., Steinhorst, S.: Security-Aware Obfuscated Pri-
ority Assignment for Automotive CAN Platforms. ACM Transactions on Design
Automation of Electronic Systems 21(2), 1–27 (2016)

19. Madl, T., Brückmann, J., Hof, H.J.: CAN Obfuscation by Randomization (CANORa
) A technology to prevent large-scale malware attacks on driverless autonomous
vehicles (September), 1–7 (2018)

20. Mell, P., Scarfone, K., Romanosky, S.: Common Vulnerability Scoring System. IEEE
Security & Privacy 4(6) (2006)

21. Miller, C., Valasek, C.: Remote Exploitation of an Unaltered Passenger Vehicle.
Defcon 23 2015, 1–91 (2015), http://illmatics.com/Remote Car Hacking.pdf

22. Miller, C., Valasek, C.: CAN Message Injection pp. 1–29 (2016),
http://illmatics.com/can message injection.pdf

Consequences for Automotive Security and Dependability 15

23. Mundhenk, P., Paverd, A., Mrowca, A., Steinhorst, S., Lukasiewycz, M., Fahmy, S.A.,
Chakraborty, S.: Security in Automotive Networks: Lightweight Authentication
and Authorization (2017)

24. Nie, S., Liu, L., Du, Y.: Free-fall: hacking tesla from wireless to can bus. Defcon pp.
1–16 (2017)

25. Nie, S., Liu, L., Du, Y., Zhang, W.: Over-the-Air : How We Remotely Compromised
the Gateway , Bcm , and Autopilot Ecus of Tesla Cars. Defcon 1 (2018)

26. Nowdehi, N., Lautenbach, A., Olovsson, T.: In-Vehicle CAN Message Authentication:
An Evaluation Based on Industrial Criteria. In: Vehicular Technology Conference
(VTC-Fall), 2017 IEEE 86th. pp. 1–7. IEEE (2017)

27. Othmane, L.B., Weffers, H., Mohamad, M.M., Wolf, M.: A survey of security and
privacy in connected vehicles. In: Wireless Sensor and Mobile Ad-Hoc Networks
Vehicular and Space Applications, pp. 217–247 (2015)

28. Palanca, A., Evenchick, E., Maggi, F., Zanero, S.: A stealth, selective, link-layer
denial-of-service attack against automotive networks, vol. 10327 LNCS, pp. 185–206.
Springer International Publishing, Cham (2017)

29. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in Machine Learning:
From Phenomena to Black-Box Attacks Using Adversarial Samples (2016)

30. Radu, A.I., Garcia, F.D.: LeiA: A lightweight authentication protocol for CAN. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). vol. 9879 LNCS, pp. 283–300
(2016)

31. Ray, S., Wen Chen, Bhadra, J., Al Faruque, M.A.: Extensibility in automotive
security: Current practice and challenges. In: 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC). pp. 1–6 (jun 2017)

32. Rosenstatter, T., Olovsson, T.: Towards a Standardized Mapping from Automotive
Security Levels to Security Mechanisms. IEEE Conference on Intelligent Trans-
portation Systems, Proceedings, ITSC 2018-Novem, 1501–1507 (2018)

33. Sabaliauskaite, G., Liew, L.S., Cui, J.: Integrating autonomous vehicle safety and
security analysis using stpa method and the six-step model. International Journal
on Advances in Security 11(1&2), 160–169 (2018)

34. Tencent Keen Security Lab: Experimental Security Assessment of BMW Cars: A
Summary Report (2018)

35. Tencent Keen Security Lab: Experimental Security Research of Tesla Autopilot
p. 38 (2019)

36. Valasek, C., Miller, C.: Adventures in Automotive Networks and Control Units.
Technical White Paper 21, 99 (2013)

37. Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In:
Workshop on Embedded Security in Cars (2004)

38. Wolf, M., Weimerskirch, A., Wollinger, T.: State of the Art: Embedding Security
in Vehicles. EURASIP Journal on Embedded Systems 2007(1), 74706 (jun 2007)

39. Zhang, Y., Ge, B., Li, X., Shi, B., Li, B.: Controlling a Car Through OBD Injection.
In: Proceedings - 3rd IEEE International Conference on Cyber Security and Cloud
Computing, CSCloud 2016 and 2nd IEEE International Conference of Scalable and
Smart Cloud, SSC 2016. pp. 26–29 (2016)

40. Zoppelt, M., Tavakoli Kolagari, R.: SAM: A Security Abstraction Model for Auto-
motive Software Systems. In: Security and Safety Interplay of Intelligent Software
Systems, pp. 59–74. Springer (2018)

