Map of the algorithm „Self-organization of Vectors"

This is a map τ from $\left(\boldsymbol{R}^{n}\right)^{\boldsymbol{k}} \rightarrow\left(\boldsymbol{R}^{n}\right)^{\boldsymbol{k}}$. Vectors are coupled by the dot product $\boldsymbol{r} \cdot \boldsymbol{d r}$.
The smallest unit of the algorithm is a pair of points with the transformation $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$.
Given vectors: $\quad \boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{12}, \boldsymbol{d} \boldsymbol{r}_{12} \in \boldsymbol{R}^{\boldsymbol{n}}$ with $\boldsymbol{r}_{12}=\boldsymbol{r}_{2}-\boldsymbol{r}_{1} ; \quad\left|\boldsymbol{d} \boldsymbol{r}_{12}\right|=1$.
The map τ depends of two scalars e and s with $e \geq s$. $\tau\left(r_{1}, r_{2}\right):$

First calculation of next $d r_{12}$.
For $\left|r_{12}\right| \leq e$ then $d r_{12}=$ constant .
For $\left|\boldsymbol{r}_{12}\right|>e$ then $\left|\boldsymbol{r}_{12} \wedge \boldsymbol{d} \boldsymbol{r}_{12}\right|=\mathrm{s}$ and $\boldsymbol{r}_{12} \cdot \boldsymbol{d r} r_{12}>0$.
Then calculation of the new positions of the two points

$$
\tau\left(r_{1}\right)=r_{1}+d r_{12}, \quad \tau\left(r_{2}\right)=r_{2}+d r_{21}=r_{2}-d r_{12} .
$$

The map τ extends to a map $\left(\boldsymbol{R}^{n}\right)^{\boldsymbol{k}} \rightarrow\left(\boldsymbol{R}^{n}\right)^{\boldsymbol{k}}$, defined for a list of k points, via a principle of superposition.
Given vectors : $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots \boldsymbol{r}_{\boldsymbol{k}}, \boldsymbol{r}_{\{a b\}}, \boldsymbol{d r _ { \{ a b \} } \in \boldsymbol { R } ^ { n }}$ with $\boldsymbol{r}_{\{a b\}}=\boldsymbol{r}_{b}-\boldsymbol{r}_{a} ; \quad\left|\boldsymbol{d r _ { \{ a b } \}}\right|=1$, where $\{a b\}$ are the chosen pairs of points.

$$
\tau\left(r_{1}, r_{2}, \ldots r_{k}\right):
$$

First calculation of all next $\boldsymbol{d r} \boldsymbol{r}_{\{a b\}}$.
For $\quad\left|\boldsymbol{r}_{\{a b\}}\right| \leq e$ then $\quad \boldsymbol{d r} \boldsymbol{r}_{\{a b\}}=$ constant .
For $\left|\boldsymbol{r}_{\{a b\}}\right|>e$ then $\left|\boldsymbol{r}_{\{a b\}} \wedge \boldsymbol{d} r_{\{a b\}}\right|=\mathrm{s}$ and $\boldsymbol{r}_{\{a b ;} \cdot \boldsymbol{d} r_{\{a b ;}>0$.
Then calculation of the new positions of all points by superposition $\tau\left(\boldsymbol{r}_{\boldsymbol{i}}\right)=\boldsymbol{r}_{\boldsymbol{i}}+\sum \boldsymbol{d r} \boldsymbol{r}_{\{i j\}}$ with $\quad \boldsymbol{d r} \boldsymbol{r}_{\{i j\}}=-\boldsymbol{d} \boldsymbol{r}_{\{i j\}} \quad$ where $\mathrm{i}=1,2, \ldots \mathrm{k}$.

I'd like to thank Richard E. Schwartz for helpful discussions related to this work.

