
From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

From Data Engineering to Prompt

Engineering

Solving data preparation tasks with ChatGPT

Photo by Ricardo Gomez Angel on Unsplash

Data engineering makes up a large part of the data science process. In CRISP-DM this process

stage is called “data preparation”. It comprises tasks such as data ingestion, data transformation

and data quality assurance. In our article we solve typical data engineering tasks using ChatGPT

and Python. By doing so, we explore the link between data engineering and the new discipline

of prompt engineering.

Introduction

In May 2022, Stephen Wolfram and Lex Fridman gave an insightful talk titled “Is programming

dead?”. They discussed whether high-level languages will still be used by developers in future.

According to Wolfram, many programming tasks can be automated with large language models

(LLMs). At the time of this writing, the most prominent example of such a model is ChatGPT.

Since its introduction in late 2022, it has generated astonishing results. Specifying an action to

be performed by an LLM is referred to as “prompt engineering”. If Wolfram is right, at least

part of software development will shift from writing code to writing prompts.

When it comes to data science, data preparation can be a time-consuming and tedious task. So

why not try to automate it with an LLM? In the following sections we tackle different data

engineering problems with ChatGPT and Python. Instead of writing the Python code ourselves,

we used prompt engineering to generate it. Our experiment was conducted on 19 May 2023

based on the latest freely available ChatGPT version (GPT-3.5) at the time.

https://unsplash.com/@rgaleriacom?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://www.youtube.com/watch?v=uD353DeOM-4
https://www.youtube.com/watch?v=uD353DeOM-4
https://openai.com/blog/chatgpt

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

Creating a data frame

Let’s start with a simple problem and create a Pandas data frame from a sample dataset.

Table 1 contains national indicators as provided for instance by the World Bank.

| Continent | Country | Year | Category | Variable | Value |

|---------------|----------|-------|---------------|-------------|--------|

| Asia | China | 2022 | Economy | GDP | 18.1 |

| Asia | China | 2022 | Demographics | Population | 1412 |

| North America | USA | 2022 | Economy | GDP | 25.5 |

| North America | USA | 2022 | Demographics | Population | 333 |

| Europe | Germany | 2022 | Economy | GDP | 3.9 |

| Europe | Germany | 2022 | Demographics | Population | 84 |

Table 1: Dataset with national indicators

In order to create a data frame from the sample above, we started a new conversation with

ChatGPT and posted the following prompt:

Create a Pandas table with the following data:

Continent, Country, Year, Category, Variable, Value

Asia, China, 2022, Economy, GDP, 18.1

Asia, China, 2022, Demographics, Population, 1412

North America, USA, 2022, Economy, GDP, 25.5

North America, USA, 2022, Demographics, Population, 333

Europe, Germany, 2022, Economy, GDP, 3.9

Europe, Germany, 2022, Demographics, Population, 84

Prompt 1: Creating a data frame

In response, the model generated the Python code below:

import pandas as pd

data = {

 'Continent': ['Asia', 'Asia', 'North America', 'North America',

 'Europe', 'Europe'],

 'Country': ['China', 'China', 'USA', 'USA', 'Germany', 'Germany'],

 'Year': [2022, 2022, 2022, 2022, 2022, 2022],

 'Category': ['Economy', 'Demographics', 'Economy', 'Demographics',

 'Economy', 'Demographics'],

 'Variable': ['GDP', 'Population', 'GDP', 'Population', 'GDP',

 'Population'],

 'Value': [18.1, 1412, 25.5, 333, 3.9, 84]

}

df = pd.DataFrame(data)

print(df)

Response 1: Code for data frame creation

https://data.worldbank.org/indicator

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

When running the script, we see that the output matches our specification:

 Continent Country Year Category Variable Value

0 Asia China 2022 Economy GDP 18.1

1 Asia China 2022 Demographics Population 1412.0

2 North America USA 2022 Economy GDP 25.5

3 North America USA 2022 Demographics Population 333.0

4 Europe Germany 2022 Economy GDP 3.9

5 Europe Germany 2022 Demographics Population 84.0

Even though we used a sample for our experiment, the code generated in the next sections can

in principle also handle bigger datasets.

Pivoting the data frame

For data science, the table structure we created with our first prompt is not optimal. Instead, a

so-called “flat table” would be more convenient. In Table 1, the indicators “GDP” and

“Population” are represented by two columns named “Variable” and “Value”. In contrast, a flat

table would contain separate columns for each indicator, as shown in Table 2.

| Continent | Country | Year | GDP | Population |

|---------------|----------|-------|-------|-------------|

| Asia | China | 2022 | 18.1 | 1412 |

| North America | USA | 2022 | 25.5 | 333 |

| Europe | Germany | 2022 | 3.9 | 84 |

Table 2: Flat table with national indicators

Converting the format of Table 1 into the format of Table 2 is called “pivoting”. Let us try to

solve this task with ChatGPT. To this end, we posted a second prompt in our conversation:

Transform the table into the following format:

Continent, Country, Year, GDP, Population

Asia, China, 2022, 18.1, 1412

North America, USA, 2022, 25.5, 333

Europe, Germany, 2022, 3.9, 84

Prompt 2: Pivoting the data frame

The above message is based on an example of the required data format. Alternatively, we could

have formulated our request in a purely verbal way. As with classical programming, there are

alternative solutions to achieve a goal in prompt engineering. Finding the optimal way will be

an exciting task for the near future. As a result of our prompt, ChatGPT adjusted the Python

code as follows:

import pandas as pd

data = {

 'Continent': ['Asia', 'Asia', 'North America', 'North America',

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

 'Europe', 'Europe'],

 'Country': ['China', 'China', 'USA', 'USA', 'Germany', 'Germany'],

 'Year': [2022, 2022, 2022, 2022, 2022, 2022],

 'Category': ['Economy', 'Demographics', 'Economy', 'Demographics',

 'Economy', 'Demographics'],

 'Variable': ['GDP', 'Population', 'GDP', 'Population', 'GDP',

 'Population'],

 'Value': [18.1, 1412, 25.5, 333, 3.9, 84]

}

df = pd.DataFrame(data)

Pivot the table

pivot_df = df.pivot_table(index=['Continent', 'Country', 'Year'],

 columns='Category', values='Value').reset_index()

Rename the columns

pivot_df.columns.name = None

pivot_df.columns = [column if column != 'Variable' else None for column in

 pivot_df.columns]

print(pivot_df)

Response 2: Pivoting code

However, running the second version of the script reveals that the output is not what we had

requested:

 Continent Country Year Demographics Economy

0 Asia China 2022 1412.0 18.1

1 Europe Germany 2022 84.0 3.9

2 North America USA 2022 333.0 25.5

Instead of the expected columns “GDP” and “Population”, the table contains two columns

named “Demographics” and “Economy”. To fix this problem, we posted the next prompt:

The columns are not correct, you should have used

the variables GDP and population

Prompt 3: Fix for the pivoting code

In response, the model corrected the mistake and generated another version of the Python code:

import pandas as pd

data = {

 'Continent': ['Asia', 'Asia', 'North America', 'North America',

 'Europe', 'Europe'],

 'Country': ['China', 'China', 'USA', 'USA', 'Germany', 'Germany'],

 'Year': [2022, 2022, 2022, 2022, 2022, 2022],

 'Category': ['Economy', 'Demographics', 'Economy', 'Demographics',

 'Economy', 'Demographics'],

 'Variable': ['GDP', 'Population', 'GDP', 'Population', 'GDP',

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

 'Population'],

 'Value': [18.1, 1412, 25.5, 333, 3.9, 84]

}

df = pd.DataFrame(data)

Pivot the table

pivot_df = df.pivot_table(index=['Continent', 'Country', 'Year'],

 columns='Variable', values='Value').reset_index()

Rename the columns

pivot_df.columns.name = None

pivot_df.columns = ['Continent', 'Country', 'Year', 'GDP', 'Population']

print(pivot_df)

Response 3: Fixed pivoting code

Running the script reveals that the pivoting was implemented correctly this time:

 Continent Country Year GDP Population

0 Asia China 2022 18.1 1412.0

1 Europe Germany 2022 3.9 84.0

2 North America USA 2022 25.5 333.0

Enriching the data frame

Another typical data engineering task is to enrich a dataset with additional information. For this

purpose, we asked ChatGPT to add ISO country codes to our data by posting the prompt below:

For each country, in the table above, add its ISO code

Prompt 4: Adding country codes

As a result, the model adjusted the response and returned the following code snippet:

import pandas as pd

data = {

 'Continent': ['Asia', 'Asia', 'North America', 'North America',

 'Europe', 'Europe'],

 'Country': ['China', 'China', 'USA', 'USA', 'Germany', 'Germany'],

 'Year': [2022, 2022, 2022, 2022, 2022, 2022],

 'Category': ['Economy', 'Demographics', 'Economy', 'Demographics',

 'Economy', 'Demographics'],

 'Variable': ['GDP', 'Population', 'GDP', 'Population', 'GDP',

 'Population'],

 'Value': [18.1, 1412, 25.5, 333, 3.9, 84]

}

iso_codes = {

 'China': 'CN',

 'USA': 'US',

https://en.wikipedia.org/wiki/ISO_3166-1

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

 'Germany': 'DE'

}

df = pd.DataFrame(data)

Add ISO code column

df['ISO Code'] = df['Country'].map(iso_codes)

Pivot the table

pivot_df = df.pivot_table(index=['Continent', 'Country',

 'ISO Code', 'Year'],

 columns='Variable', values='Value').reset_index()

Rename the columns

pivot_df.columns.name = None

pivot_df.columns = ['Continent', 'Country', 'ISO Code',

 'Year', 'GDP', 'Population']

print(pivot_df)

Response 4: Data frame with country codes

Running the script shows that a new column with ISO codes had been added to the data frame.

 Continent Country ISO Code Year GDP Population

0 Asia China CN 2022 18.1 1412.0

1 Europe Germany DE 2022 3.9 84.0

2 North America USA US 2022 25.5 333.0

Deriving a column

Let us next derive a new column “GDP per capita” by dividing the GDP of a country by its

population size. To do so, we have sent this prompt:

Derive a new column "GDP per capita" by dividing the GDP

of a country by its population size

Prompt 5: Deriving a new column

In response, the model revised the code as follows:

import pandas as pd

data = {

 'Continent': ['Asia', 'Asia', 'North America', 'North America',

 'Europe', 'Europe'],

 'Country': ['China', 'China', 'USA', 'USA', 'Germany', 'Germany'],

 'Year': [2022, 2022, 2022, 2022, 2022, 2022],

 'Category': ['Economy', 'Demographics', 'Economy', 'Demographics',

 'Economy', 'Demographics'],

 'Variable': ['GDP', 'Population', 'GDP', 'Population', 'GDP',

 'Population'],

 'Value': [18.1, 1412, 25.5, 333, 3.9, 84]

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

}

iso_codes = {

 'China': 'CN',

 'USA': 'US',

 'Germany': 'DE'

}

df = pd.DataFrame(data)

Add ISO code column

df['ISO Code'] = df['Country'].map(iso_codes)

Pivot the table

pivot_df = df.pivot_table(index=['Continent', 'Country',

 'ISO Code', 'Year'],

 columns='Variable', values='Value').reset_index()

Calculate GDP per capita

pivot_df['GDP per capita'] = pivot_df['GDP'] / pivot_df['Population']

Rename the columns

pivot_df.columns.name = None

pivot_df.columns = ['Continent', 'Country', 'ISO Code', 'Year', 'GDP',

 'Population', 'GDP per capita']

print(pivot_df)

Response 5: Data frame with new column

The output reveals that the script produces the expected result:

 Continent Country ISO Code Year GDP Population GDP per capita

0 Asia China CN 2022 18.1 1412.0 0.012819

1 Europe Germany DE 2022 3.9 84.0 0.046429

2 North America USA US 2022 25.5 333.0 0.076577

Analyzing the data

Once the data transformations are completed, the actual analysis can begin. Let us finally

calculate the correlation coefficient between the GDP and the population of the countries. To

this end, we posted a last prompt:

Use the table above to calculate the correlation coefficient between

the GDP and the population of the countries

Prompt 6: Analyzing correlation

As a result, the model returned the code fragment below:

import pandas as pd

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

data = {

 'Continent': ['Asia', 'Asia', 'North America', 'North America',

 'Europe', 'Europe'],

 'Country': ['China', 'China', 'USA', 'USA', 'Germany', 'Germany'],

 'Year': [2022, 2022, 2022, 2022, 2022, 2022],

 'Category': ['Economy', 'Demographics', 'Economy', 'Demographics',

 'Economy', 'Demographics'],

 'Variable': ['GDP', 'Population', 'GDP', 'Population', 'GDP',

 'Population'],

 'Value': [18.1, 1412, 25.5, 333, 3.9, 84]

}

df = pd.DataFrame(data)

Pivot the table

pivot_df = df.pivot_table(index=['Continent', 'Country', 'Year'],

 columns='Variable', values='Value').reset_index()

Calculate correlation coefficient

correlation_coefficient = pivot_df['GDP'].corr(pivot_df['Population'])

print("Correlation Coefficient: {:.3f}".format(correlation_coefficient))

Response 6: Code to analyze correlation

When running the script, we find a positive correlation between the two variables, which is not

a surprise:

Correlation Coefficient: 0.350

Conclusion

Admittedly, our experiment was based on a simple dataset. Nevertheless, the results are

remarkable. We performed several data engineering tasks without writing a single line of code.

ChatGPT was not only able to correctly implement our prompts in most cases. But even when

the model made a mistake, it was capable of reflecting and fixing it. As always in software

development, generated code must be tested. Moreover, it may need refactoring and

optimization. Using pylint is still a good idea in the age of AI. Summarizing, however, we have

to agree with Wolfram: In future, a significant part of data engineering will shift from coding

to prompt engineering. This new approach will not replace data engineers, but will make them

more efficient.

All images unless otherwise noted are by the authors. In the PDF version, source code may

have been reformatted for layout reasons.

From Data Engineering to Prompt Engineering | by Christian Koch | May, 2023 | Towards Data Science

https://towardsdatascience.com/from-data-engineering-to-prompt-engineering-5debd1c636e0

About the authors

Christian Koch is an Enterprise Architect at BWI GmbH and Lecturer at the Nuremberg

Institute of Technology Georg Simon Ohm.

Markus Stadi is a Senior Cloud Data Engineer at Dehn SE working in the field of Data

Engineering, Data Science and Data Analytics for many years.

Lukas Berle is a Data Architect at TeamBank AG specialized in the design and

implementation of robust data analytics architectures.

