
Post-Quantum Cryptography with Python and Linux | Christian Koch et al. | August, 2023 | Towards Data Science

https://towardsdatascience.com/post-quantum-cryptography-with-python-and-linux-17b1ca1b3e1

Post-Quantum Cryptography with Python

and Linux

A beginner’s guide

Photo by Jean-Louis Paulin on Unsplash

If we believe Edward Snowden, encryption is “the only true protection against surveillance”

[1]. However, advances in quantum technology might endanger this safeguard. Our article

discusses why quantum computing poses a threat to data security and what to do about it.

Instead of a purely theoretical analysis, we build on code examples using Python, C, and Linux.

Quantum basics

When Google scientists reported the first case of quantum supremacy in 2019, they caused great

excitement. One area where quantum computing could have significant impact is encryption.

To understand this issue, we need to discuss some basics.

In contrast to classical computers, algorithms for quantum computers do not rely on bits, but

on qubits. A bit can either take the state 0 or 1. When we measure a bit several times, we

invariably get the same result. With qubits, things are different. As strange as it sounds, a qubit

can take the value 0 and 1 at the same time. When we measure it repeatedly, there is only a

certain probability for getting the result 0 or 1. In the initial state of a qubit, the probability for

measuring 0 is commonly one hundred percent. Through superposition, however, different

probability distributions can be generated. Causes lie in quantum mechanics, following other

laws than “normal” life.

https://unsplash.com/@jlxp?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://www.nature.com/articles/s41586-019-1666-5

Post-Quantum Cryptography with Python and Linux | Christian Koch et al. | August, 2023 | Towards Data Science

https://towardsdatascience.com/post-quantum-cryptography-with-python-and-linux-17b1ca1b3e1

The main advantage of quantum computers is their probabilistic nature. Classical computers

excel at problems where we reliably need a single result. Quantum machines, on the other hand,

are superb at dealing with probabilities and combinatorics. When we perform an operation on

a qubit in a superposed state, it is simultaneously applied to both values 0 and 1. As the number

of qubits increases, so does the advantage over a classical computer. A quantum machine with

three qubits can process up to eight values (2³) simultaneously: namely, the binary numbers

000, 001, 010, 011, 100, 101, 110, and 111.

Scientific literature agrees that quantum computers will help solving problems that previously

seemed intractable. Yet there are no optimal quantum machines available. The current

generation of quantum computers is referred to as noisy intermediate-scale quantum (NISQ).

Such machines have limited processing power and are sensitive to errors. Modern devices offer

up to several hundred qubits. One example is the 433-qubit Osprey chip that IBM introduced

in 2022. Now, the company plans to develop a machine with 100,000 qubits by 2033.

Our article explains why this evolution poses a threat to data security. Using code examples,

we show why quantum computers could break certain encryption and discuss workarounds.

The source code is available on GitHub. It was developed under Kali Linux 2023.2 using

Anaconda with Python 3.10.

Encryption and prime factors

When encrypting a message, a relatively simple way is to apply a symmetric algorithm. Such a

method uses the same key for both the encryption of the plaintext and the decryption of the

ciphertext. A major challenge with this approach is the secure exchange of the key between

sender and recipient. Once the private key becomes known to a third party, they have the chance

to intercept and decrypt the message.

Asymmetric cryptography seemed to be the solution to this problem. Methods like RSA use

different keys for encryption and decryption. Encryption is performed here with one or more

public keys that the recipient makes accessible to everyone. For decryption, the recipient uses

a private key, which is known only to them. This way, the sender can obtain the public key

without risk, since it is not secret anyway. Only the recipient’s private key must be protected.

But how can such a procedure be hardened, when potential attackers know the public key? To

this end, asymmetric algorithms rely on mathematical problems like prime factorization.

Prime factorization is best understood by example. In Python, we can use the function

factorint of the library SymPy to determine the prime factors of a certain integer.

>>> import sympy

>>> sympy.factorint(10)

{2: 1, 5: 1}

>>> 2**1 * 5**1

10

>>> sympy.factorint(1000)

{2: 3, 5: 3}

>>> 2**3 * 5**3

1000

>>> sympy.factorint(55557)

{3: 2, 6173: 1}

>>> 3**2 * 6173**1

55557

>>>

https://spectrum.ieee.org/ibm-quantum-computer-osprey
https://www.technologyreview.com/2023/05/25/1073606/ibm-wants-to-build-a-100000-qubit-quantum-computer/
https://github.com/c4ristian/encryption
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://www.sympy.org/en/index.html

Post-Quantum Cryptography with Python and Linux | Christian Koch et al. | August, 2023 | Towards Data Science

https://towardsdatascience.com/post-quantum-cryptography-with-python-and-linux-17b1ca1b3e1

The above console output illustrates that every natural number can be expressed as a product

of prime numbers. These are called prime factors. Thinking back to school days, a prime

number is divisible only by 1 and itself. For example, the number 10 can be expressed by the

term 10=2¹ * 5¹. Thus, the prime factors of 10 are 2 and 5. Analogously, the number 55557 can

be expressed by the equation 55557=3² * 6173¹. So, the prime factors of 55557 equal 3 and

6173. The process of finding prime factors for a given integer is called prime factorization.

With classical computers, prime factorization is simple for small numbers, but becomes

increasingly hard for big integers. Each additional number drastically increases the sum of

possible combinations. Beyond a certain point, it becomes virtually impossible for a classical

computer to determine prime factors. For example, consider the following number (RSA-260)

from the RSA Factoring Challenge, ended in 2007. At the time of writing, it has not yet been

factorized.

#!/usr/bin/env python

import sympy

rsa_260 =

221128255295296664352810852550262309276120895024700153944137483191288229414

020019865127297265697465990859003300314000511707422045608592763579537571859

542988389587092292384910067030341246205457845664136645406842143612930176940

20846391065875914794251435144458199

print("Start factoring...")

factors = sympy.factorint(rsa_260)

Will probably not be reached

print(factors)

Asymmetric algorithms like RSA utilize the computational hardness of prime factorization and

similar problems to secure encryption. Unfortunately, the quantum world follows its own laws.

Quantum algorithms

Regarding cryptography, two quantum algorithms are of particular concern. Shor’s algorithm

provides an efficient way of prime factorization. When performed on a large quantum device,

it can theoretically break asymmetric methods like RSA. From a practical perspective, this

scenario lies in the future. A Nature article from 2023 mentions the number of at least 1,000,000

qubits required. Hardware aside, it is also difficult to find implementations of the algorithm that

reliably scale on large quantum machines. IBM’s framework Qiskit had tried to implement a

function, but deprecated it with version 0.22.0. However, experimental implementations of

Shor’s algorithm can be found online.

Grover’s algorithm poses a threat to symmetric encryption. Also known as quantum search

algorithm, it offers a speed-up for unstructured search of the input for a given function.

Quantum computers can use it to accelerate brute-force attacks on symmetrically encrypted

information. Yet, unlike Shor’s algorithm, the offered speedup is not exponential. In simple

terms, this means that increasing the length of the key used for encryption makes the search

excessively more expensive. For example, performing a brute-force attack on a 128-bit key

requires a maximum of 2¹²⁸ iterations. Assuming that Grover’s search reduces this number to

2⁶⁴, doubling the key length to 256 bits increases it again to 2¹²⁸ iterations. This opens the door

to possible workarounds.

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://arxiv.org/abs/quant-ph/9508027
https://www.nature.com/articles/d41586-023-00017-0
https://qiskit.org/
https://qiskit.org/documentation/release_notes.html#algorithms-upgrade-notes
https://arxiv.org/abs/quant-ph/9605043

Post-Quantum Cryptography with Python and Linux | Christian Koch et al. | August, 2023 | Towards Data Science

https://towardsdatascience.com/post-quantum-cryptography-with-python-and-linux-17b1ca1b3e1

Symmetric workaround

Under certain conditions, symmetric encryption is a ready-to-use and simple way to counter

quantum algorithms. Reason is that Grover’s search does not scale exponentially and Shor’s

algorithm only threatens asymmetric approaches. To best of current knowledge, symmetric

algorithms with a high degree of hardness can be considered quantum-resistant. At present,

both the American NIST as well as the German BSI include AES-256 in this category [2][3].

The acronym AES stands for Advanced Encryption Standard and the number 256 represents

the bit length of the key. Under Linux, AES-256 is implemented by the GNU Privacy Guard

(GnuPG). The following shell script shows how a file can be encrypted and then decrypted

again using AES-256.

Encrypt

gpg --output encrypted.gpg --symmetric --cipher-algo AES256 plain.txt

Decrypt

gpg --output decrypted.txt --decrypt encrypted.gpg

The above script encrypts the content of the file “plain.txt”, writes the ciphertext to the

document “encrypted.gpg”, decrypts it again and finally saves the output to the file

“decrypted.txt”. Before encryption, GnuPG asks for a passphrase to generate the private key.

For security reasons, it is vital to choose a strong passphrase and keep it secret. GnuPG might

cache the passphrase and not ask again when decrypting. To clear the cache, the following shell

command can be executed.

gpg-connect-agent reloadagent /bye

Integrating GnuPG into Python is relatively simple with the subprocess module. A prototype

implementation of the encryption with AES-256 is shown in the code fragment below.

#!/usr/bin/env python

import subprocess

import getpass

Read passphrase

passphrase = getpass.getpass("Passphrase:")

passphrase2 = getpass.getpass("Passphrase:")

if passphrase != passphrase2:

 raise ValueError("Passphrases not identical!")

Perform encryption

print("Encrypting...")

args = [

 "gpg",

 "--batch",

 "--passphrase-fd", "0",

 "--output", "encrypted.gpg",

 "--symmetric",

 "--yes",

 "--cipher-algo", "AES256",

 "plain.txt",

]

result = subprocess.run(

 args, input=passphrase.encode(),

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.gnupg.org/

Post-Quantum Cryptography with Python and Linux | Christian Koch et al. | August, 2023 | Towards Data Science

https://towardsdatascience.com/post-quantum-cryptography-with-python-and-linux-17b1ca1b3e1

 capture_output=True)

if result.returncode != 0:

 raise ValueError(result.stderr)

For getting a passphrase, the above script uses the getpass module. After confirmation, the

passphrase is transferred to GnuPG via standard input. This is indicated by the argument

passphrase-fd 0. Alternatively, passphrases can be sent to GnuPG as a string or by file with

command line arguments. However, as these arguments are visible to other users, both options

were rejected for the prototype. Another, more secure way would be to use the GPG-Agent.

Which option to take depends on the desired security level. A proof-of-concept including

encryption and decryption is provided here. As an alternative to GnuPG, there are other AES-

256 implementations. Choosing a trustworthy source is vital here.

Asymmetric workaround

In search of an asymmetric solution, the NIST Post-Quantum Cryptography Standardization

program is a good starting point. Since 2016, it has evaluated multiple candidates for quantum-

resistant algorithms. One of the winners is Kyber. The system implements a so-called secure

key encapsulation mechanism. Similar to other algorithms, Kyber relies on a hard-to-solve

problem to protect key exchange between two parties. Instead of prime factorization, it is based

on a problem called “learning with errors.” What level of protection Kyber offers, depends on

the key length. For example, Kyber-1024 aims at a security level “roughly equivalent to

AES-256” [4].

A reference implementation of Kyber, written in C, is available on GitHub. Under Linux, we

can clone and build the framework by executing the shell commands below. Some prerequisites

are required for installation, which are documented in the project’s README.

git clone https://github.com/pq-crystals/kyber.git

cd kyber/ref && make

There are several ways to integrate the reference implementation into Python. One of them is

to write a C program and call it. The C function below uses Kyber to perform a key exchange

between two fictional parties, Alice and Bob. For the full source code, see here.

#include <stddef.h>

#include <stdio.h>

#include <string.h>

#include "kem.h"

#include "randombytes.h"

void round_trip(void) {

 uint8_t pk[CRYPTO_PUBLICKEYBYTES];

 uint8_t sk[CRYPTO_SECRETKEYBYTES];

 uint8_t ct[CRYPTO_CIPHERTEXTBYTES];

 uint8_t key_a[CRYPTO_BYTES];

 uint8_t key_b[CRYPTO_BYTES];

 //Alice generates a public key

 crypto_kem_keypair(pk, sk);

 print_key("Alice' public key", pk);

 //Bob derives a secret key and creates a response

 crypto_kem_enc(ct, key_b, pk);

 print_key("Bob's shared key", key_b);

https://www.gnupg.org/documentation/manuals/gnupg/Invoking-GPG_002dAGENT.html
https://github.com/c4ristian/encryption/blob/master/gpg/execute_gpg.py
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://pq-crystals.org/kyber/
https://github.com/pq-crystals/kyber
https://github.com/c4ristian/encryption/blob/master/kyber/execute_round_trip.c

Post-Quantum Cryptography with Python and Linux | Christian Koch et al. | August, 2023 | Towards Data Science

https://towardsdatascience.com/post-quantum-cryptography-with-python-and-linux-17b1ca1b3e1

 print_key("Bob's response key", ct);

 //Alice uses Bobs response to get her shared key

 crypto_kem_dec(key_a, ct, sk);

 print_key("Alice' shared key", key_a);

}

Without going into details, one can see that Kyber uses multiple public and private keys. In the

above example, Alice generates a public key (pk) and a private key (sk). Next, Bob uses the

public key (pk) to derive a shared key (key_b) and a response key (ct). Latter is returned to

Alice. Finally, Alice uses the response key (ct) and her private key (sk) to generate an instance

of the shared key (key_a). As long as both parties keep their private and shared keys secret, the

algorithm offers protection. When running the program, we obtain an output similar to the text

below.

Alice' public key: F0476B9B5867DD226588..

Bob's shared key: ADC41F30B665B1487A51..

Bob's response key: 9329C7951AF80028F42E..

Alice' shared key: ADC41F30B665B1487A51..

In order to call the C function in Python, we can use the subprocess module. Alternatively, it

is possible to build a shared library and invoke it with the ctypes module. Second option is

implemented in the Python script below. After loading the shared library, generated from the

Kyber C code, the procedure round_trip is called like any other Python function.

#!/usr/bin/env python

import os

import ctypes

Load shared library

libname = f"{os.getcwd()}/execute_round_trip1024.so"

clib = ctypes.CDLL(libname, mode=1)

print("Shared lib loaded successfully:")

print(clib)

Call round trip function

print("Executing round trip:")

clib.round_trip()

In addition to Kyber’s reference implementation, other providers have implemented the

algorithm. Examples are the open-source projects Botan and Open Quantum Safe.

Conclusion

As our analysis reveals, quantum technology is still in its early stages. But we should not

underestimate the threat it poses to encryption and other cryptographic methods such as

signatures. Disruptive innovation can boost development at any time. Attackers can store

messages now and decrypt later. Therefore, security measures should be taken immediately.

Especially since there are workarounds available. When used properly, symmetric algorithms

like AES-256 are considered quantum-resistant. In addition, asymmetric solutions like Kyber

are progressing. Which alternatives to use depends on the application. Following a Zero Trust

model, a combination of approaches gives the best protection. This way, the quantum threat

could end up like the Y2K problem — as a self-defeating prophecy.

https://botan.randombit.net/
https://openquantumsafe.org/

Post-Quantum Cryptography with Python and Linux | Christian Koch et al. | August, 2023 | Towards Data Science

https://towardsdatascience.com/post-quantum-cryptography-with-python-and-linux-17b1ca1b3e1

About the authors

Christian Koch is an Enterprise Architect at BWI GmbH and Lecturer at the Nuremberg

Institute of Technology Georg Simon Ohm.

Lucie Kogelheide is the Technology Lead Post-Quantum Cryptography at BWI GmbH and

responsible for initiating the company’s migration process to quantum safe cryptography.

Raphael Lorenz is the Founder and CISO of Lorenz Systems and specializes in holistic

security solutions.

References

1. Snowden, Edward: Permanent Record. Macmillan, 2019.

2. National Institute of Standards and Technology: NIST Post-Quantum Cryptography:

FAQS. 29 June 2023. Accessed: 02 August 2023.

3. Federal Office for Information Security (BSI): Quantum-safe cryptography —

fundamentals, current developments and recommendations (PDF). October 2021.

Accessed: 02 August 2023.

4. CRYSTALS — Cryptographic Suite for Algebraic Lattices: Kyber Home. December

2020. Accessed: 02 August 2023.

Disclaimer

Please note that information security is a critical topic and that there is no warranty by the

authors for the published content.

https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf?__blob=publicationFile&v=4
https://pq-crystals.org/kyber/index.shtml

