TY - CHAP A1 - Götzelmann, Timo T1 - CapMaps: Capacitive Sensing 3D Printed Audio-Tactile Maps T2 - Proc. 15th International Conference on Computers Helping People with Special Needs N2 - Tactile maps can be useful tools for blind people for navigation and orientation tasks. Apart from static maps, there are techniques to augment tactile maps with audio content. They can be used to interact with the map content, to offer extra information and to reduce the tactile complexity of a map. Studies show that audio-tactile maps can be more efficient and satisfying for the user than pure tactile maps without audio feedback. A major challenge of audio-tactile maps is the linkage of tactile elements with audio content and interactivity. This paper introduces a novel approach to link 3D printed tactile maps with mobile devices, such as smartphones and tablets, in a flexible way to enable interactivity and audio-support. By integrating conductive filaments into the printed maps it seamlessly integrates into the 3D printing process. This allows to automatically recognize the tactile map by a single press at its corner. Additionally, the arrangement of the tactile map on the mobile device is flexible and detected automatically which eases the use of these maps. The practicability of this approach is shown by a dedicated feasibility study. Y1 - 2015 UR - https://doi.org/10.1007/978-3-319-41267-2_20 SN - 978-3-319-41266-5 VL - 2015 SP - 146 EP - 152 PB - Springer CY - Cham ER - TY - CHAP A1 - Götzelmann, Timo T1 - Concept of the Joint Use of Smartphone Camera and Projector for Keyboard Inputs N2 - The efficiency of text input by today’s smartphones is significantly limited by the small extents of the virtual keyboard displayed for allowing alphanumeric inputs. Future smartphones will integrate projectors which allow to project multimedia content as well as the smartphones’ dialogs. This paper introduces a concept to project the whole smartphone’s display onto a surface allowing the user to realize text inputs by interacting with the virtual keyboard projection. This projection is analyzed by standard image processing algorithms. Finally, an experimental implementation shows the feasibility of this concept. KW - Human Computer Interaction KW - Smartphone KW - Projector KW - Virtual keyboard KW - Limited input space KW - Mensch-Maschine-Kommunikation KW - Smartphone KW - Projektionsapparat KW - Tastatur Y1 - 2013 UR - http://iscse2013.gediz.edu.tr/ SN - 2147-9097 N1 - Link zum Volltext: http://iscse2013.gediz.edu.tr/docs/ISCSE2013_PROCEEDINGS.pdf PB - Gediz University Press CY - Gediz ER - TY - JOUR A1 - Kreimeier, Julian A1 - Bielmeier, Tobias A1 - Götzelmann, Timo T1 - Evaluation of Capacitive Markers Fabricated by 3D Printing, Laser Cutting and Prototyping JF - Journal of Inventions: Special Issue Innovations in 3-D Printing N2 - With Tangible User Interfaces, the computer user is able to interact in a fundamentally different and more intuitive way than with usual 2D displays. By grasping real physical objects, information can also be conveyed haptically, i.e., the user not only sees information on a 2D display, but can also grasp physical representations. To recognize such objects (“tangibles”) it is skillful to use capacitive sensing, as it happens in most touch screens. Thus, real objects can be located and identified by the touch screen display automatically. Recent work already addressed such capacitive markers, but focused on their coding scheme and automated fabrication by 3D printing. This paper goes beyond the fabrication by 3D printers and, for the first time, applies the concept of capacitive codes to laser cutting and another immediate prototyping approach using modeling clay. Beside the evaluation of additional properties, we adapt recent research results regarding the optimized detection of tangible objects on capacitive screens. As a result of our comprehensive study, the detection performance is affected by the type of capacitive signal processing (respectively the device) and the geometry of the marker. 3D printing revealed to be the most reliable technique, though laser cutting and immediate prototyping of markers showed promising results. Based on our findings, we discuss individual strengths of each capacitive marker type. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:92-opus4-5603 VL - 2018 IS - Volume 3, Issue 1, Article 9 PB - MDPI ER - TY - CHAP A1 - Kreimeier, Julian A1 - Hammer, Sebastian A1 - Friedmann, Daniel A1 - Karg, Pascal A1 - Bühner, Clemens A1 - Bankel, Lukas A1 - Götzelmann, Timo T1 - Evaluation of Different Types of Haptic Feedback Influencing the Task-based Presence and Performance in Virtual Reality T2 - Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA'19) N2 - Haptic feedback may support immersion and presence in virtual reality (VR) environments. The emerging market of consumer devices offers first devices which are expected to increase the degree of feeling being actually present in a virtual environment. In this paper we introduce a novel evaluation that examines the influence of different types of haptic feedback on presence and performance regarding manual tasks in VR. Therefore, we conducted a comprehensive user study involving 14 subjects, who performed throwing, stacking and object identification tasks in VR with visual (i.e., sensory substitution), vibrotactile or force feedback. We measured the degree of presence and task-related performance metrics. Our results indicate that regarding presence vibrotactile feedback outperforms haptic feedback which performs better than visual feedback only. In addition, force feedback significantly lowered the execution time for the throwing and the stacking task. In object identification tasks, the vibrotactile feedback increased the detection rates compared to the vibrotactile and force feedback, but also increased the required time of identification. Despite the inadequacies of the still young consumer technology, there were nevertheless strong indications of connections between presence, task fulfillment and the type of haptic feedback. Y1 - 2019 UR - https://doi.org/10.1145/3316782.3321536 SN - 978-1-4503-6232-0 SP - 289 EP - 298 PB - ACM CY - New York, NY, USA ER - TY - CHAP A1 - Kreimeier, Julian A1 - Götzelmann, Timo T1 - FeelVR: Haptic Exploration of Virtual Objects T2 - Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference (PETRA '18) N2 - The interest in virtual and augmented reality increased rapidly in the last years. Recently, haptic interaction and its applications get into focus. In this paper, we suggest the exploration of virtual objects using off-the-shelf VR game controllers. These are held like a pen with both hands and were used to palpate and identify the virtual object. Our study largely coincides with comparable previous work and shows that a ready-to-use VR system can be basically used for haptic exploration. The results indicate that virtual objects are more effectively recognized with closed eyes than with open eyes. In both cases, objects with a bigger morphological difference were identified the most frequently. The limitations due to quality and quantity of tactile feedback should be tackled in future studies that utilize currently developed wearable haptic devices and haptic rendering involving all fingers or even both hands. Thus, objects could be identifiable more intuitively and haptic feedback devices for interacting with virtual objects will be further disseminated. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:92-opus4-5611 VL - 2018 SP - 122 EP - 125 PB - ACM CY - New York ER - TY - CHAP A1 - Kreimeier, Julian A1 - Götzelmann, Timo T1 - First Steps Towards Walk-In-Place Locomotion and Haptic Feedback in Virtual Reality for Visually Impaired T2 - CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI'19 Extended Abstracts) N2 - This paper presents the first results on a user study in which people with visual impairments (PVI) explored a virtual environment (VE) by walking in a virtual reality (VR) treadmill. As recently suggested, we have now acquired first results from our feasibility study investigating this walk-in-place interaction. This represents a new, more intuitive way of for example virtually exploring unknown spaces in advance. Our prototype consists of off-the-shelf VR components (i.e., treadmill, headphones, glasses, and controller) providing a simplified white cane simulation and was tested by six visually impaired subjects. Our results indicate that this interaction is yet difficult, but promising and an important step to make VR more and better usable for PVIs. As an impact on the CHI community, we would like to make this research field known to a wider audience by sharing our intermediate results and suggestions for improvements, on some of which we are already working on. Y1 - 2019 UR - https://doi.org/10.1145/3290607.3312944 SN - 978-1-4503-5971-9 VL - 2019 SP - 1 EP - 6 PB - ACM CY - New York, NY, USA ER - TY - CHAP A1 - Götzelmann, Timo A1 - Vázquez, Pere-Pau T1 - InclineType: An Accelerometer-based Typing Approach for Smartwatches T2 - Proc. 16th International Conference on Human Computer Interaction N2 - Small mobile devices such as smartwatches are a rapidly growing market. However, they share the issue of limited input and output space which could impede the success of these devices in future. Hence, suitable alternatives to the concepts and metaphors known from smartphones have to be found. In this paper we present InclineType a tilt-based keyboard input that uses a 3-axis accelerometer for smartwatches. The user may directly select letters by moving his/her wrist and enters them by tapping on the touchscreen. Thanks to the distribution of the letters on the edges of the screen, the keyboard dedicates a low amount of space in the smartwatch. In order to optimize the user input our concept proposes multiple techniques to stabilize the user interaction. Finally, a user study shows that users get familiar with this technique with almost no previous training, reaching speeds of about 6 wpm in average. Y1 - 2015 UR - https://doi.org/10.1145/2829875.2829929 SN - 978-1-4503-3463-1 VL - 2015 PB - ACM CY - New York, NY, USA ER - TY - CHAP A1 - Götzelmann, Timo T1 - Interactive Tactile Maps for Blind People using Smartphones Integrated Cameras T2 - Proc. 9th ACM International Conference on Interactive Tabletops and Surfaces (ITS'14) N2 - Tactile maps may support blind persons in orientation and understanding geographical relations, but their availability is still very limited. However, recent technologies such as 3D printers allow to autonomously print individual tactile maps which can be linked with interactive applications. Besides geographical depictions, textual annotation of maps is crucial. However, this often adds much complexity to tactile maps. To limit tactile complexity, interactive approaches may help to complement maps by the auditive modality. The presented approach integrates barcodes into tactile maps to allow their detection by standard smartphones' cameras. Automatically, more detailed map data is obtained to auditively support the exploration of the tactile map. Our experimental implementation shows the principal feasibility and provides the basis of ongoing comprehensive user studies. Y1 - 2014 UR - https://doi.org/10.1145/2669485.2669550 SN - 978-1-4503-2587-5 VL - 2014 SP - 381 EP - 385 PB - ACM CY - New York, NY, USA ER - TY - CHAP A1 - Götzelmann, Timo T1 - LucentMaps: 3D Printed Audiovisual Tactile Maps for Blind and Visually Impaired People T2 - Proc. 18th International ACM SIGACCESS Conference on Computers and Accessibility N2 - Tactile maps support blind and visually impaired people in orientation and to familiarize with unfamiliar environments. Interactive approaches complement these maps with auditory feedback. However, commonly these approaches focus on blind people. We present an approach which incorporates visually impaired people by visually augmenting relevant parts of tactile maps. These audiovisual tactile maps can be used in conjunction with common tablet computers and smartphones. By integrating conductive elements into 3D printed tactile maps, they can be recognized by a single touch on the mobile device's display, which eases the handling for blind and visually impaired people. To allow multiple elevation levels in our transparent tactile maps, we conducted a study to reconcile technical and physiological requirements of off-the-shelf 3D printers, capacitive touch inputs and the human tactile sense. We propose an interaction concept for 3D printed audiovisual tactile maps, verify its feasibility and test it with a user study. Our discussion includes economic considerations crucial for a broad dissemination of tactile maps for both blind and visually impaired people. Y1 - 2016 UR - https://doi.org/10.1145/2982142.2982163 SN - 978-1-4503-4124-0 VL - 2016 SP - 90 PB - ACM CY - New York, NY, USA ER - TY - CHAP A1 - Dotenco, Sergiu A1 - Götzelmann, Timo A1 - Gallwitz, Florian T1 - Smartphone Input Using an Integrated Projector and a Monocular Camera T2 - Lecture Notes in Computer Science N2 - Touch input on modern smartphones can be tedious, especially if the touchscreen is small. Smartphones with integrated projectors can be used to overcome this limitation by projecting the screen contents onto a surface, allowing the user to interact with the projection by means of simple hand gestures. In this work, we propose a novel approach for projector smartphones that allows the user to remotely interact with the smartphone screen via its projection. We detect user's interaction using the built-in camera, and forward detected hand gestures as touch input events to the operating system. In order to avoid costly computations, we additionally use built-in motion sensors. We verify the proposed method using an implementation for the consumer smartphone Samsung Galaxy Beam equipped with a deflection mirror. KW - Mobile computing KW - Touch input KW - Projector KW - Smartphone KW - Limited input space KW - App KW - Programmierung KW - Projektionsapparat Y1 - 2014 UR - http://link.springer.com/chapter/10.1007/978-3-319-07227-2_13 SN - 978-3-319-07226-5 VL - Volume 8512 PB - Springer ER - TY - CHAP A1 - Götzelmann, Timo T1 - SmartTactMaps: A Smartphone-Based Approach to Support Blind Persons in Exploring Tactile Maps T2 - Proc. 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments N2 - Despite increasing digitalization of our society many blind persons still have very limited access to predominantly pictorial information such as maps. In this paper we introduce a novel approach to improve the accessibility of maps for blind users by utilizing the abilities of standard smartphones. A major issue of tactile maps is the limited discriminability of the humans' tactile sense. Textual annotation of maps is crucial, but adds much complexity to tactile maps. Additionally, only few Braille labels can be accommodated to maintain legibility. In our approach we link smartphones with adapted tactile maps which transforms the physical maps into interactive surfaces using both the tactile and the auditory modality. We integrate machine readable metadata into these maps which can be recognized by the smartphones' camera to immediately obtain detailed map descriptions from a free global database. During tactile exploration of the map, blind users can request auditory explanations by interacting with the mobile application. An experimental application and a user study demonstrate the feasibility of our approach. Y1 - 2015 UR - https://doi.org/10.1145/2769493.2769497 SN - 978-1-4503-3452-5 VL - 2015 PB - ACM CY - New York, NY, USA ER - TY - CHAP A1 - Götzelmann, Timo A1 - Althaus, Christoph T1 - TouchSurfaceModels: Capacitive Sensing Objects through 3D Printers T2 - Proc. 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments N2 - Nowadays, 3D models can be downloaded from the internet and increasingly be printed by low cost 3D printers. In the future, blind people could benefit from this tendency. Unfortunately, many of these models are rather complex and not appropriate for the purely tactile exploration. To obtain quantitative data about how 3D printable models for blind people should be constructed, the tactile exploration can be recorded by video. However, the analysis of these videos is quite time consuming and expensive. Additionally, inaccuracies and masking effects may impede the use of this technique. In this paper we introduce a novel approach to automatically equip existing 3D models with a mesh of conductive wires which enable a touch sensitive surface for the printed 3D objects. These touch sensing 3D models can be printed in one turn by off-the-shelf 3D printers and used as an alternative to video recording. It allows exact registration of when and where the 3D object has been touched. In our multi-touch solution, particular attention has been paid to limit the number of necessary wires between 3D object and sensing electronics. Finally, our approach is evaluated by a feasibility study. Y1 - 2016 UR - https://doi.org/10.1145/2910674.2910690 SN - 978-1-4503-4337-4 VL - 2016 PB - ACM CY - New York, NY, USA ER - TY - CHAP A1 - Götzelmann, Timo A1 - Pavkovic, Aleksander T1 - Towards Automatically Generated Tactile Detail Maps by 3D Printers for Blind Persons BT - 14th International Conference, ICCHP 2014, Paris, France, July 9-11, 2014, Proceedings, Part II T2 - Computers Helping People with Special Needs N2 - This paper introduces an approach for the (semi)automatic generation of worldwide available, detailed tactile maps including buildings and blind-specific features based on recognized illustrators’ guidelines and standards. These guidelines for tactile maps are investigated in order to define a formal rule set and to automatically filter map data accordingly. Using the rule set, our approach automatically abstracts map data in order to generate a 2.1D tactile model providing multiple height levels (layers) which can be printed by usual consumer 3D printers. Based on the popular OpenStreetMap map data, our automated approach allows to generate arbitrary detail maps blind persons individually interested in, without the need for manual adaption of the tactile map. Thus, this approach contributes to the goal to increase the autonomy of blind persons. KW - Tactile Maps KW - Accessibility KW - Haptic KW - 3D printer KW - 3D-Drucker KW - Blindenkarte Y1 - 2014 SN - 978-3-319-08599-9 U6 - https://doi.org/10.1007/978-3-319-08599-9_1 PB - Springer ER - TY - JOUR A1 - Götzelmann, Timo T1 - Visually Augmented Audio-Tactile Graphics for Visually Impaired People JF - ACM Transactions on Accessible Computing (TACCESS) N2 - Tactile graphics play an essential role in knowledge transfer for blind people. The tactile exploration of these graphics is often challenging because of the cognitive load caused by physiological constraints and their complexity. The coupling of physical tactile graphics with electronic devices offers to support the tactile exploration by auditory feedback. Often, these systems have strict constraints regarding their mobility or the process of coupling both components. Additionally, visually impaired people cannot appropriately benefit from their residual vision. This article presents a concept for 3D printed tactile graphics, which offers to use audio-tactile graphics with usual smartphones or tablet-computers. By using capacitive markers, the coupling of the tactile graphics with the mobile device is simplified. These tactile graphics integrating these markers can be printed in one turn by off-the-shelf 3D printers without any post-processing and allows us to use multiple elevation levels for graphical elements. Based on the developed generic concept on visually augmented audio-tactile graphics, we presented a case study for maps. A prototypical implementation was tested by a user study with visually impaired people. All the participants were able to interact with the 3D printed tactile maps using a standard tablet computer. To study the effect of visual augmentation of graphical elements, we conducted another comprehensive user study. We tested multiple types of graphics and obtained evidence that visual augmentation may offer clear advantages for the exploration of tactile graphics. Even participants with a minor residual vision could solve the tasks with visual augmentation more quickly and accurately. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:92-opus4-5571 VL - 2018 IS - Volume 11, Issue 2, Article No. 8 PB - ACM ER -