TY - RPRT A1 - Hornfeck, Rüdiger A1 - Löffler, Robin A1 - Landkammer, Stefan T1 - Mögliche, zukünftige Robotergelenke nach biologischem Vorbild N2 - Roboter halten in vielen Bereichen unserer Gesellschaft immer mehr Einzug. Dies bedeutet auch, dass der Mensch gemeinsam mit dem Roboter Arbeiten verrichten muss, ohne dass es zu Verletzungen kommt. Um dieses Ziel zu erreichen, sind neben den bisherigen mechatronischen Systemen auch neue Konstruktionsprinzipien gefragt. Konstruktionsbeispiele für nachgiebige Gelenke liefert die Natur. Am Beispiel einer bionischen Konstruktion nach dem Vorbild eines Spinnenbeins wird die Realisierung eines Softroboters „BioFlexRobot“ vorgestellt. Abschließend werden die Einsatzgrenzen dieses Gelenkroboters aufgezeigt und mögliche neue Forschungsfelder zur Leistungssteigerung aufgezeigt. T3 - Sonderdruck / Schriftenreihe der Georg-Simon-Ohm-Hochschule, Nürnberg - 71 KW - Bionik KW - Spinnenbein KW - Softrobotik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:92-opus4-9329 SP - 3 EP - 14 CY - Nürnberg ER - TY - JOUR A1 - Löffler, Robin A1 - Tremmel, Stephan A1 - Hornfeck, Rüdiger T1 - Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators JF - Biomimetics N2 - Nature provides a considerable number of good examples for simple and very efficient joint assemblies. One example is the enormously flexible cervical spine of American barn owls, which consists of 14 cervical vertebrae. Each pair of vertebrae produces a comparatively small individual movement in order to provide a large overall movement of the entire cervical spine. The biomimetic replication of such joints is difficult due to the delicate and geometric unrestricted joint shapes as well as the muscles that have to be mimicked. Using X-ray as well as micro-computed tomography images and with the utilisation of additive manufacturing, it was possible to produce the owl neck vertebrae in scaled-up form, to analyse them and then to transfer them into technically usable joint assemblies. The muscle substitution of these joints was realised by smart materials actuators in the form of shape memory alloy wire actuators. This actuator technology is outstanding for its muscle-like movement and for its high-energy density. The disadvantage of this wire actuator technology is the low rate of contraction, which means that a large length of wire has to be installed to generate adequate movement. For this reason, the actuator wires were integrated into additively manufactured carrier components to mimic biological joints. This resulted in joint designs that compensate for the disadvantages of the small contraction of the actuators by intelligently installing large wire lengths on comparatively small installation spaces, while also providing a sufficient force output. With the help of a test rig, the developed technical joint variants are examined and evaluated. This demonstrated the technical applicability of this biomimetic joints. KW - biomimetic innovation; additive manufacturing; shape memory alloys; resource efficiency; sustainability Y1 - 2023 U6 - https://doi.org/10.3390/biomimetics8010117 SN - 2313-7673 VL - 8 IS - 1 PB - MDPI AG ER - TY - JOUR A1 - Löffler, Robin A1 - Rücker, Daniel A1 - Müller, Fabian A1 - Hornfeck, Rüdiger T1 - Method for simulative reproduction, verification and technical adaptation as part of biological kinematics studies JF - Procedia CIRP KW - Design Methods ; Bionics ; Bio-inspired Design ; Inverse Kinematics Y1 - 2021 U6 - https://doi.org/10.1016/j.procir.2021.05.138 SN - 2212-8271 VL - 100 SP - 649 EP - 654 PB - Elsevier BV ER - TY - JOUR A1 - Löffler, Robin A1 - Koch, Michael T1 - Innovative Extruder Concept for Fast and Efficient Additive Manufacturing JF - IFAC-PapersOnLine N2 - The current standard for the production of 3D printed components with the "Fused Deposition Modelling" (FDM) process allows the use of one or two printing nozzles with fixed diameters. The selected diameter of the nozzle represents a suboptimal compromise between the highest possible level of detail and a large flow rate to shorten the printing time. This paper describes the new concept of a rotatable print head with a slot-shaped nozzle opening and the real implementation of the print head in an FDM machine. The innovative concept presented here opens up new possibilities for the free adjustment of line widths to be printed and thus also of variable layer heights in a wide range. With the additional parameters achieved with this method, the printing time of parts with a high degree of detail, if necessary, can be enormously reduced. In addition, the modified printing nozzle and the modification of the program code used for conventional FDM machines are described. KW - fdm fused deposition modeling am additive manufacturing rapid prototyping nozzle Y1 - 2019 U6 - https://doi.org/10.1016/j.ifacol.2019.10.071 SN - 2405-8963 VL - 52 IS - 10 SP - 242 EP - 247 PB - Elsevier BV ER -