@inproceedings{UllmannKreimeierGoetzelmannetal.2020, author = {Ullmann, Daniela and Kreimeier, Julian and G{\"o}tzelmann, Timo and Kipke, Harald}, title = {BikeVR}, series = {Proceedings of Mensch und Computer 2020}, booktitle = {Proceedings of Mensch und Computer 2020}, publisher = {Association for Computing Machinery}, address = {New York, NY}, isbn = {978-1-4503-7540-5}, doi = {10.1145/3404983.3410417}, pages = {511-514}, year = {2020}, abstract = {While becoming more and more aware of the ongoing climate change, eco-friendly means of transport for all citizens are moving further into focus. In order to be able to implement specific measures, it is necessary to better understand and emphasize sustainable transportation like walking and cycling through focused research. When developing novel traffic concepts and urban spaces for non-motorized traffic participants like bicycles and pedestrians, traffic and urban planning must be focused on their needs. To provide rare qualitative factors (such as stress, the perception of time and attractiveness of the environment) in this context, we present an audiovisual VR bicycle simulator which allows the user to cycle through a virtual urban environment by physically pedaling and also steering. Virtual Reality (VR) is a suitable tool in this context, as study participants find identical and almost freely definable (virtual) urban spaces with adjustable traffic scenarios. Our preliminary prototype proved to be promising and will be further optimized and evaluated.}, language = {en} } @inproceedings{Goetzelmann2013, author = {G{\"o}tzelmann, Timo}, title = {Concept of the Joint Use of Smartphone Camera and Projector for Keyboard Inputs}, publisher = {Gediz University Press}, address = {Gediz}, issn = {2147-9097}, pages = {52-57}, year = {2013}, abstract = {The efficiency of text input by today's smartphones is significantly limited by the small extents of the virtual keyboard displayed for allowing alphanumeric inputs. Future smartphones will integrate projectors which allow to project multimedia content as well as the smartphones' dialogs. This paper introduces a concept to project the whole smartphone's display onto a surface allowing the user to realize text inputs by interacting with the virtual keyboard projection. This projection is analyzed by standard image processing algorithms. Finally, an experimental implementation shows the feasibility of this concept.}, subject = {Mensch-Maschine-Kommunikation}, language = {en} } @inproceedings{DotencoGoetzelmannGallwitz2014, author = {Dotenco, Sergiu and G{\"o}tzelmann, Timo and Gallwitz, Florian}, title = {Smartphone Input Using an Integrated Projector and a Monocular Camera}, series = {Lecture Notes in Computer Science}, volume = {Volume 8512}, booktitle = {Lecture Notes in Computer Science}, publisher = {Springer}, isbn = {978-3-319-07226-5}, pages = {124-133}, year = {2014}, abstract = {Touch input on modern smartphones can be tedious, especially if the touchscreen is small. Smartphones with integrated projectors can be used to overcome this limitation by projecting the screen contents onto a surface, allowing the user to interact with the projection by means of simple hand gestures. In this work, we propose a novel approach for projector smartphones that allows the user to remotely interact with the smartphone screen via its projection. We detect user's interaction using the built-in camera, and forward detected hand gestures as touch input events to the operating system. In order to avoid costly computations, we additionally use built-in motion sensors. We verify the proposed method using an implementation for the consumer smartphone Samsung Galaxy Beam equipped with a deflection mirror.}, subject = {App }, language = {en} } @inproceedings{SchaeffPuglieseGoetzelmann, author = {Sch{\"a}ff, Christian and Pugliese, Gaston and G{\"o}tzelmann, Timo}, title = {Behavior Based Web User Identification}, series = {GI-Edition / Seminars}, volume = {Volume S-13}, booktitle = {GI-Edition / Seminars}, publisher = {K{\"o}llenDruck+Verlag}, address = {Bonn}, isbn = {978-3-88579-447-9}, issn = {1614-3213}, pages = {201-204}, abstract = {This paper examines different approaches for the identification of users by their personal behavior and discusses techniques which could be used in the context of websites. Such web tracking approaches have the potential to identify users even if they use multiple or shared devices. For web pages mouse and touch input are widely used. Therefore, we propose a survey to evaluate the feasibility to identify users by their interaction behavior.}, subject = {Authentifikation}, language = {en} }