@inproceedings{DietzdiTommasoMicelietal.2021, author = {Dietz, Armin and di Tommaso, A. O. and Miceli, R. and Nevoloso, C. and Schettino, G.}, title = {Enhanced Modelling for Extended Performance Analysis of Interior Permanent Magnet Synchronous Machine Drive fed with Cascaded H-Bridges Multilevel Inverter}, series = {2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)}, booktitle = {2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)}, publisher = {IEEE}, doi = {10.1109/ever52347.2021.9456635}, pages = {9}, year = {2021}, abstract = {This paper presents a comparative simulation analysis of an Interior Permanent Magnet Synchronous Machine (IPMSM) performance once fed by a traditional three-phase two-level inverter and then using a three-phase five-level Cascaded H-Bridges Multilevel Inverter (CHBMI). For this purpose, an enhanced mathematical model of the IPMSM, that take into account simultaneously saturation, cross-coupling, spatial harmonics and iron loss effects, has been employed. Furthermore, two different PWM modulation strategies have been considered. The study was conducted for several working conditions, evaluating the impact of CHBMI adoption on the IPMSM performance in terms of improved efficiency and torque ripple reduction.}, language = {en} } @inproceedings{DietzCarusoDiTommasoetal.2020, author = {Dietz, Armin and Caruso, M. and Di Tommaso, A. O. and Miceli, R. and Nevoloso, C.}, title = {Enhanced Mathematical Modelling of Interior Permanent Magnet Synchronous Machine Considering Saturation, Cross-Coupling and Spatial Harmonics effects}, series = {2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)}, booktitle = {2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)}, publisher = {IEEE}, doi = {10.1109/ever48776.2020.9243003}, pages = {9}, year = {2020}, abstract = {The Interior Permanent Magnet Synchronous machine (IPMSM) conventional mathematical model is generally employed to investigate and simulate the IPMSM control and drive system behaviour. However, magnetic nonlinearities and spatial harmonics have a substantial influence on the IPMSM electromagnetic behaviour and performances. In order to simulate the IPMSM real electromagnetic behaviour, this paper describes an enhanced mathematical model that takes into account the saturation, cross-coupling and spatial harmonics effects. This model has been implemented in MatlabĀ®/Simulink environment where the electric and magnetic parameters are derived from FEA investigations and implemented by the use of lookup tables. The high fidelity of the proposed IPMSM Simulink model is validated by the results of the FEA investigations carried out.}, language = {en} }