Regularized step directions in nonlinear conjugate gradient methods

  • Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Cassidy K. BuhlerORCiD, Hande Y. BensonORCiD, David F. Shanno
DOI:https://doi.org/10.1007/s12532-024-00265-9
ISSN:1867-2949
Parent Title (English):Mathematical Programming Computation
Publisher:Springer Science and Business Media LLC
Document Type:Article
Language:English
Year of Completion:2024
Volume:16
Issue:4
Page Number:36
First Page:629
Last Page:664
Mathematical Programming Computation :MPC 2024 - Issue 4
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.