A new computational framework for log-concave density estimation

  • AbstractIn statistics, log-concave density estimation is a central problem within the field of nonparametric inference under shape constraints. Despite great progress in recent years on the statistical theory of the canonical estimator, namely the log-concave maximum likelihood estimator, adoption of this method has been hampered by the complexities of the non-smooth convex optimization problem that underpins its computation. We provide enhanced understanding of the structural properties of this optimization problem, which motivates the proposal of new algorithms, based on both randomized and Nesterov smoothing, combined with an appropriate integral discretization of increasing accuracy. We prove that these methods enjoy, both with high probability and in expectation, a convergence rate of order 1/T up to logarithmic factors on the objective function scale, where T denotes the number of iterations. The benefits of our new computational framework are demonstrated on both synthetic and real data, and our implementation is available in a github repository (Log-Concave Computation).

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wenyu Chen, Rahul Mazumder, Richard J. Samworth
DOI:https://doi.org/10.1007/s12532-024-00252-0
ISSN:1867-2949
Parent Title (English):Mathematical Programming Computation
Publisher:Springer Science and Business Media LLC
Document Type:Article
Language:English
Year of Completion:2024
Volume:16
Issue:2
Page Number:44
First Page:185
Last Page:228
Mathematical Programming Computation :MPC 2024 - Issue 2
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.