Self-adaptive ADMM for semi-strongly convex problems

  • In this paper, we develop a self-adaptive ADMM that updates the penalty parame- ter adaptively. When one part of the objective function is strongly convex i.e., the problem is semi-strongly convex, our algorithm can update the penalty parameter adaptively with guaranteed convergence. We establish various types of convergence results including accelerated convergence rate of O(1/k2), linear convergence and convergence of iteration points. This enhances various previous results because we allow the penalty parameter to change adaptively. We also develop a partial proximal point method with the subproblems being solved by our adaptive ADMM. This enables us to solve problems without semi-strongly convex property. Numerical experiments are conducted to demonstrate the high efficiency and robustness of our method.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tianyun Tang, Kim-Chuan Toh
DOI:https://doi.org/10.1007/s12532-023-00250-8
ISSN:1867-2949
Parent Title (English):Mathematical Programming Computation
Publisher:Springer Science and Business Media LLC
Document Type:Article
Language:English
Year of Completion:2023
Volume:16
Issue:1
Page Number:38
First Page:113
Last Page:150
Mathematical Programming Computation :MPC 2024 - Issue 1
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.