The classical solvability of the contact angle problem for generalized equations of mean curvature type

Please always quote using this URN:urn:nbn:de:0296-matheon-7459
  • In this paper, mean curvature type equations with general potentials and contact angle boundary conditions are considered. We extend the ideas of Ural'tseva, formulating sharper hypotheses for the existence of a classical solution. Corner stone for these results is a method to estimate quantities on the boundary of the free surface. We moreover provide alternative proofs for the higher-order estimates, and for the existence result.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Pierre-Etienne Druet
Referee:Fredi Tröltzsch
Document Type:Preprint, Research Center Matheon
Date of first Publication:2011/04/01
Release Date:2011/04/01
Institute:Technische Universität Berlin
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
MSC-Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Bxx Qualitative properties of solutions / 35B65 Smoothness and regularity of solutions
35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J93 Quasilinear elliptic equations with mean curvature operator
58-XX GLOBAL ANALYSIS, ANALYSIS ON MANIFOLDS [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx](For geometric integration theory, see 49Q15) / 58Jxx Partial differential equations on manifolds; differential operators [See also 32Wxx, 35-XX, 53Cxx] / 58J99 None of the above, but in this section
Preprint Number:754
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.