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We derive and study a dynamical model for suspensions of negatively buoyant particles
on an incline. Our theoretical model includes the settling/sedimentation due to gravity
as well as the resuspension of particles induced by shear-induced migration, leading to
disaggregation of the dense sediment layer. Out of the three different regimes observed
in the experiments, we focus on the so-called settled case, where the particles settle out
of the flow, and two distinct fronts, liquid and particle, form. Using an approach relying
on asymptotics, we systematically connect our dynamic model with the previously de-
veloped equilibrium theory for particle-laden flows. We show that the resulting transport
equations for the liquid and the particles are of hyperbolic type, and study the dilute
limit, for which we derive the analytic solution. We also carry out a systematic experi-
mental study of the settled regime, focusing on the motion of the liquid and the particle
fronts. Finally, we carry out numerical simulations of our transport equations. We show
that the model predictions for small to moderate values of the particle volume fraction
and the inclination angle of the solid substrate agree well with the experimental data.

1. Introduction and Background

Despite their relevance to various industrial and environmental applications, the sys-
tems involving sedimentation, settling, and resuspension of particles in viscous liquids are
still not fully understood. The seminal works on this subject, e.g. Kynch (1952); Richard-
son & Zaki (1954); Davis & Acrivos (1985); Schaflinger et al. (1990); Acrivos et al. (1992),
have primarily focused on settling and sedimentation in quiescent liquid medium or in
Couette flows. Our focus in this paper is on the particle-laden thin-film flows on an in-
cline, involving a free surface and contact lines. Due to complexities resulting from a
perplexing interplay of various relevant mechanisms, including settling/resuspension and
viscous fingering at the contact line, only recent studies have began to address this class
of problems, e.g. Zhou et al. (2005); Cook (2008). While particle-laden thin-film flows
represent a formidable problem from the theoretical standpoint, these flows are captured
through relatively simple experiments, see e.g. Ward et al. (2009); Murisic et al. (2011).

When a rigid spherically-shaped particle settles under the influence of gravity in a
quiescent liquid, the well-known Stokes’ Law applies. When a large number of such rigid
spheres settles, the Stokes’ Law is modified to include a hinderance term, accounting for
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particle-particle interaction. This effect was first studied in Richardson & Zaki (1954),
where a simple hinderance term (1− φ)m, with φ being the particle volume fraction and
m ≈ 5.1, was constructed empirically and included into expression for Stokes velocity as
a multiplicative factor. Alternate forms of the hinderance function were proposed more
recently, e.g. for dilute dispersions in Batchelor (1972), or (1−φ) in the presence of shear,
see Schaflinger et al. (1990).

Experiments with concentrated suspensions in Couette flows showed that heavy par-
ticles need not settle when shear is present. This curious behavior was studied in detail
in Leighton & Acrivos (1987a), and it was attributed to the so-called shear-induced mi-
gration mechanism, which was first formulated in Leighton & Acrivos (1987b) and then
refined in Phillips et al. (1992). Shear-induced migration was derived based on irreversible
interactions between pairs of particles. The particles migrate via a diffusive flux, induced
by gradients in both the particle volume fraction, φ, and the suspension viscosity, µ(φ).
Subsequent works focused on particle-laden channel flows, and included shear-induced
migration effect in the Stokesian Dynamics framework, see e.g. Nott & Brady (1994);
Brady & Morris (1997); Timberlake & Morris (2005).

Only more recent works have focused on the problem of particle-laden thin-film flows
on an incline. In Zhou et al. (2005), experiments were carried out using suspensions of
glass beads with diameter ∼ O(100µm). The bulk particle volume fraction, φ0, and the
inclination angle, α, were varied over a wide range, and it was found that, depending
on the values of these two parameters, three different regimes occur. When φ0 and α
were small, the settled regime resulted, where the particles would settle out of the flow
and the clear liquid would flow over the particulate bed. The two distinct fronts would
form in this regime, a particle front and a clear liquid front. The former was found to
be slower, and the latter was susceptible to the well-known fingering instability, typical
for clear liquid films. For large values of φ0 and α, the ridged regime occurred, where
particles would flow faster than the liquid phase, and they would accumulate at the front
of the flow, forming a ridge at the contact line. Finally, for intermediate values of φ0 and
α, the suspension would remain well-mixed throughout the experiment. The theoretical
model developed in Zhou et al. (2005) was based on the Navier-Stokes equations for the
liquid and a continuum diffusive model for the particles, including hindered settling. It
was simplified by neglecting the capillary terms, and studied using a shock-dynamics
approach, the direction further pursued in Cook et al. (2007). The model was successful
at describing the details of the ridged regime. In order to better understand the three
different regimes, the shear-induced migration was included for the first time in modeling
of particle-laden thin-film flows in Cook (2008). In this work, an equilibrium model for
particle settling was derived, based on the balance of hindered settling and shear-induced
migration fluxes. The ODE-based model agreed well with the experimental data from
Zhou et al. (2005). It captured the transitions from the well-mixed state and hinted at
the transient nature of this regime. The work in Ward et al. (2009) was an experimental
study of particle-laden thin-film flows on an incline, where the focus was on the front
propagation in the well-mixed and ridged regimes, using both heavy and light particles.
It was found that the front speed obeys a power law with an exponent close to the
famous 1/3 from Huppert (1982). In Grunewald et al. (2010), the self-similarity in a
lubrication-based model for the case of constant volume flows was explored. The main
focus was on the ridged regime, and the influence of the precursor thickness on the model
prediction was also studied. In Murisic et al. (2011), extensive experiments were carried
out, where the influence of the particle size and the viscosity of the suspending liquid were
examined. These experiments confirmed the transient nature of the well-mixed regime.
An extension of the equilibrium model from Cook (2008) was employed, and a time-scales
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argument was introduced, explaining the dynamics of the transition between the well-
mixed and settled regimes. Finally, a dynamic model for particle-laden thin film flows
was introduced, based on a coupled set of hyperbolic conservation laws, and a connection
between this model and the equilibrium one was indicated.

While, direct numerical simulations of the suspension flows coupled to many-particle-
dynamics are possible nowadays, e.g. see Glowinski et al. (2001), these computations are
usually limited a few thousand particles. Simulation of physically realistic situations are
still far too computationally expensive when individual particles are considered. There-
fore, the merit of using a continuum approach, in which one describes the evolution of
statistical quantities such as particle volume fraction φ, volume averaged velocity u, and
pressure p is still quite apparent.

In this paper, our goal is to derive systematically a dynamic model for particle and
liquid transport in order to better understand the less-studied settled regime. In order
to achieve this aim, we carry out both theoretical and experimental work. We study
a dense suspension flow on an incline, consisting of negatively buoyant particles with
uniform size in a viscous suspending liquid. We concentrate on the settled regime, where
gravity drives the flow down an incline, and leads to stratification of the suspension. We
consider a continuum model, including the effects of hindered settling and shear-induced
migration. The model is based on the Stokes’ equations for an incompressible variable-
viscosity suspension, and the conservation of total mass of particles. A dynamic model for
transport of liquid and particles is developed in a systematic manner using an asymptotic
approach. Due to the disparity in the relevant time-scales, a fast one for the settling and
a slow one for the suspension flow, we are able to assume that the particle distribution is
in equilibrium along the direction normal to the solid substrate (the settling direction)
while the particles are transported along the solid substrate (the flow direction). Hence,
we formally connect the equilibrium model with the dynamic one in a single framework.
We study the derived dynamic model, explicitly confirm its hyperbolicity, and consider
the dilute limit for which we derive the analytic solution. We also study the settled
regime experimentally by carrying out extensive experiments where the bulk particle
volume fraction and the inclination angle are varied over a wide range of values. In these
experiments, we focus on the evolution of the two fronts, the particle and the liquid one.
Finally, we solve the hyperbolic conservation laws numerically, and compare the model
predictions with the experimental data.

This paper is organized as follows. In §2 we introduce the model and show how the
lubrication approximation may be employed to find an advection equation for both the
suspension volume and the particle volume fraction. Furthermore we explain how details
of this model depend on the bulk particle volume fraction and the inclination angle.
This is followed by §3, where we introduce the experimental techniques and describe
the experimental observations. Next, in §4, we solve the dynamic model numerically and
compare the results with the experimental data. We conclude with a brief discussion.

2. Theory

We consider an inclined flow of a suspension consisting of a viscous liquid and spherical
monodisperse non-colloidal negatively buoyant particles. The particles are assumed to be
rigid and the liquid is incompressible. The modeling is carried out within the continuum
limit. The flows are assumed to obey the transverse symmetry; therefore, the cross-
section of the flow is considered throughout the paper. Henceforth, we use the subscripts
p and ` to differentiate between quantities corresponding to the particles and the liquid
respectively.
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Figure 1. Sketch of a suspension flow with sediment layer.

Figure 1 shows the set-up (for clarity, the figure omits the contact line region). The x-
and z-coordinates are in the directions along and normal to the solid substrate respec-
tively. The solid substrate is located at z = 0 and the inclination angle of the solid is α.
The total suspension thickness is denoted by h(x, t). Our focus is on the settled regime
for which a dense sedimentation layer of particles forms close to the solid substrate, the
region 0 ≤ z ≤ T where T < h, with a clear liquid layer (φ = 0) on top of it, T < z ≤ h.
At each time t and point (x, z) the particle volume fraction 0 ≤ φ(t, x, z) < 1 and the
volume-averaged velocity u(t, x, z) = (u(t, x, z), w(t, x, z))> are defined. For monodis-
perse spheres, the upper bound for φ is in fact less than unity: the maximum packing
volume fraction φm = 0.61 was estimated experimentally in Murisic et al. (2011). Since
the particles are heavy, the mass densities satisfy ρp > ρ`. The suspension viscosity is
assumed to depend on the particle volume fraction, i.e. µ = µ(φ). Finally, the incom-
pressibility assumption translates to ∇ · u = 0.

In what follows, we derive a reduced model in which the local state can be uniquely
characterized by average quantities. We also assume that the fastest dynamics is the
instantaneous averaging of φ in the z-direction. As a result, the overall dynamics of the
system are determined by a combination of two processes with very different time-scales:
the fast process of φ averaging, resulting in stationarity of the particle fluxes in the z-
direction and allowing us to reconstruct the φ and u dependence on z; and, the slow flow
down the incline, where h and u vary slowly in x, and the dynamics is driven by the
conservation laws for the average quantities, e.g. the suspension volume and the number
of particles.

2.1. Two-phase model and lubrication equations

For Ωt = {(x, z) : 0 < z < h(t, x)}, consider the following system of PDEs for the particle
volume fraction φ : Ωt → [0, 1] and the suspension velocity u : Ωt → R2

−∇ · (−pI + µ(φ)(∇u +∇u>)) = f (2.1a)

∂tφ+ u · ∇φ+∇ · J = 0, (2.1b)

where the buoyancy is taken into account via f = (ρpφ+ρ`(1−φ))g and the acceleration
of gravity is given by g = g(sinα,− cosα)>. Henceforth, we utilize the notation for
partial differentiation: ∂t[·] = ∂

∂t [·] etc. The dependence of the suspension viscosity on φ
is included through the so-called Krieger-Dougherty relation, µ(φ) = µ`(1 − φ/φm)−2,
see Van Der Werff & De Kruif (1989) and Brady (1993). As written, Eqs. 2.1a) and b)
are simply statements of the balance of linear momentum for the suspension (Stokes’
equations) and the conservation of particle mass respectively. The particle fluxes are



Dynamics of particle settling and resuspension in viscous liquids 5

defined as in Murisic et al. (2011)

J =
d2

4
∇ ·
[
Kc

(
∂x(γ̇φ)
∂z(γ̇φ)

)
+

2Kvφ
2γ̇

φm − φ

(
∂xφ
∂zφ

)]
− d2(ρp − ρ`)

18µ`φ2
m

∇ ·
[
φ(1− φ)(φm − φ)2g

]
,

taking into account the shear-induced migration via the terms in the first brackets,
see Phillips et al. (1992), and the hindered settling of particles due to gravity via the
remaining term, as in Schaflinger et al. (1990). Here, Kc and Kv are empirical constants
multiplying the contributions to the shear-induced particle flux due to gradients in the
particle volume fraction and the effective suspension viscosity respectively; we follow
Phillips et al. (1992) and use Kc = 0.41 and Kv = 0.62. The importance of including the
shear-induced migration for successful description of the key feature of the suspension
flow was shown previously in Cook (2008) and Murisic et al. (2011). We note that here,
the hindrance to settling due to the wall-effect, used in Murisic et al. (2011), is neglected.
The particle diameter is d, and the shear rate is given as usual, γ̇ = 1

4‖∇u+∇u>‖. Here,
we neglect the contribution to the particle flux due to Brownian motion, a reasonable
assumption since the relevant Péclet number is large, see Murisic et al. (2011).

Equations 2.1 are accompanied by the incompressibility condition, ∂xu+∂zw = 0, and
the following boundary conditions: no-slip and impermeability at the solid substrate,
u = w = 0 at z = 0; the zero-shear-stress condition at the free surface, µ(φ)∂zu = 0 at
z = h; and the zero-particle-flux condition at both interfaces, J = 0 at z = 0 and z = h.
The free surface evolves according to the kinematic condition, ∂th = w− u∂xh at z = h.

Next, we scale Eqs. 2.1 in the spirit of the lubrication approximation, see e.g. Kondic
& Bertozzi (1999), using the following scales

[x] = ε−1H, [z] = H, [φ] = 1,

[u] =
H2ρ`g sinα

µ`
= U, [w] = ε[u], [t] = [x]/[u],

where H is the typical thickness of the suspension film, while ε is the small lubrication-
style parameter, to be defined shortly. Assuming that the settling and the suspension
velocities are not modified by the hinderance, the typical distance a particle travels in
the x-direction as it settles down to the solid substrate is given as a product of the
relevant time- and velocity-scales

H/ cosα

USt
U = Hη−2 18

ρs
tanα, (2.2)

where ρs = (ρp − ρ`)/ρ`, η = d/H, and the Stokes settling velocity of a single particle is
given as USt = gd2(ρp−ρ`)/(18µ`). Clearly, when η → 1, the continuum hypothesis breaks
down. On the other hand, for η → 0, the transport of the particles is purely convective,
the settling time-scale goes to infinity, and the suspension behaves like a colloid. Here,
we want to derive a continuum model where the z-dependence of the particle volume
fraction is preserved. Therefore, we require that η2 � 1, where the manner in which η
approaches zero is of crucial importance. This may be controlled by requiring that the
typical travel distance defined by Eq. 2.2 is asymptotically smaller than the lubrication
length scale [x] = H/ε, so that the particle fluxes in the z-direction are in an equilibrium.
Hence, we study the following limit

ε� η2 � 1. (2.3)

One way to achieve this is to set η2 = εβ where 0 < β < 1. Applying the scales to
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Eq. 2.1b), while keeping in mind the definition of η, gives

∂tφ+ u∂xφ+ w∂zφ = εβ
Kc

4

[
ε∂x (φ∂x(γ̇φ)) + ε−1∂z (φ∂z(γ̇φ))

]
+εβ

Kv

2

[
ε∂x

(
φ2γ̇

φm − φ
∂xφ

)
+ ε−1∂z

(
φ2γ̇

φm − φ
∂zφ

)]
−εβ ρs

18φ2
m

[
∂x
(
φ(1− φ)(φm − φ)2

)]
+εβ

ρs cotα

18φ2
m

[
ε−1∂z

(
φ(1− φ)(φm − φ)2

)]
. (2.4)

We proceed by defining the asymptotic expansions of the solution

φ(t, x, z) = φ0(t, x, z) + o(1)

u(t, x, z) = u0(t, x, z) + o(1)

w(t, x, z) = εw0(t, x, z) + o(ε)

h(t, x) = h0(t, x) + o(1).

This also sets the expansions for the particle flux, J = εβ−1
(
J∗x , J

0
z + J∗z

)>
, and for the

shear rate, γ̇ = ∂zu
0+o(1). The higher order flux corrections are J∗x = o(ε) and J∗z = o(1),

the subscripts denoting the directions in which they act. Using these expansions in Eq. 2.4
leads to

∂tφ
0 + u0∂xφ

0 + w0∂zφ
0 = εβ−1∂zJ

0
z + εβ−1∂zJ

∗
z + o(εβ) =

εβ−1∂z

[
Kc

4
φ0∂z(φ

0∂zu
0) +

Kv

2

(φ0)2∂zu
0

φm − φ0
∂zφ

0

+
ρs cotα

18
φ0(1− φ0)

(
φm − φ0

φm

)2
]

+ εβ−1∂zJ
∗
z + o(εβ). (2.5)

The leading order terms are O(εβ−1), describing the effect of the most dominant particle
flux, J0

z . We drop the “0” superscript for simplicity, and integrate the leading order terms
in Eq. 2.5 with respect to z, while using either of the zero-flux boundary conditions. This
results in

0 =
Kc

4
φ(u′φ)′ +

Kv

2

φ2u′φ′

φm − φ
+
ρs cotα

18
φ(1− φ)

(
φm − φ
φm

)2

, (2.6)

where primes indicate differentiation with respect to z. This equation is complemented
by the zero-flux boundary conditions, Jz(0) = Jz(h) = 0, one of which has already been
used in the previous integration. Using a similar approach on Eq. 2.1a) leads to(

µ(φ)u′
)′

= −(1 + ρsφ), (2.7)

where µ(φ) = (1 − φ/φm)−2, accompanied by the boundary conditions u = 0 at z = 0,
and µ(φ)u′ = 0 at z = h.

The system of ODEs given by Eqs. 2.6 and 2.7 is very similar to the ones previously
derived in Cook (2008) and Murisic et al. (2011): it constitutes the equilibrium model
for the particle settling. This model has a one-parameter family of solutions, which may
be parameterized by the integrated volume fraction of particles, defined as

n(t, x) =

∫ h

0

φ(t, x, z) dz. (2.8)
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In other words, once n is fixed, the z-dependence of φ and u may be determined uniquely
from Eqs. 2.6 and 2.7 and the accompanying boundary conditions. In order to indicate
that the dependence on z at the leading order solution is only parametrical through n,
we write φ = φ(t, x; z) and u = u(t, x; z). We note that the initial values n(0, x) may
be obtained using the initial data, but the time-dependence of n is still unknown at this
point. In order to determine this time-dependence, we are required to proceed to the
next-order correction in Eq. 2.5, i.e. the O(1) terms; we also maintain the correction
term to the particle flux, J∗z , just to be safe, and obtain

∂tφ+ u∂xφ+ w∂zφ = εβ−1∂zJ
∗
z . (2.9)

To close the system and cast the dynamic model into a concrete framework together with
the equilibrium model from Eqs. 2.6 and 2.7, we integrate Eq. 2.9 in the z-direction,
from z = 0 to z = h. The flux correction term drops out via the use of the zero-

flux boundary conditions. Using ∂t
∫ h

0
φdz = φ∂th|z=h +

∫ h
0
∂tφdz, and the kinematic

condition, ∂th = w − u∂xh at z = h, gives

∂t

∫ h

0

φdz = φ(w − u∂xh)|z=h −
∫ h

0

u∂xφdz −
∫ h

0

w∂zφdz.

Here, the first integral on the right-hand side is evaluated using the chain rule and the

fact that ∂x
∫ h

0
φudz = φu∂xh|z=h +

∫ h
0
∂x (φu) dz; the second integral on the right-hand

side is integrated by parts. We then employ the impermeability condition, w|z=0 = 0,
and the incompressibility condition, ∂xu+ ∂zw = 0, to obtain

∂t

∫ h

0

φdz + ∂x

∫ h

0

φudz = 0.

Finally, recalling the definition of n gives

∂tn+ ∂x

∫ h

0

φ(t, x; z)u(t, x; z) dz = 0, (2.10a)

an advection equation for the particle number n. This is a conservation law for the
particles.

The corresponding advection equation for the suspension volume is obtained by first

substituting ∂x
∫ h

0
udz = u∂xh|z=h +

∫ h
0
∂xudz into the kinematic condition to get

∂th+ ∂x

∫ h

0

udz = w|z=h +

∫ h

0

∂xudz.

Here, the terms on the right-hand side add to zero: this can be seen by evaluating the
integral on the right-hand side, and using incompressibility, ∂xu = −∂zw, and imperme-
ability, w|z=0 = 0. Hence, we obtain

∂th+ ∂x

∫ h

0

u(t, x; z) dz = 0, (2.10b)

a conservation law for the suspension volume. Finally, it is convenient to rewrite the
equilibrium equations in terms of the stress σ = µ(φ)u′

Kc

4
φ

(
φσ

µ(φ)

)′
+
Kv

2

σφ′

µ(φ)

φ

φm − φ
+
ρs cotα

18

φ(1− φ)

µ(φ)
= 0 (2.10c)

σ′ = −(1 + ρsφ), (2.10d)

with the boundary conditions u(0) = 0, Jz(0) = Jz(h) = 0, and σ(h) = 0. Equations 2.10
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give the full theoretical framework. We note that conservation laws similar to Eqs. 2.10a)
and b) were introduced in Murisic et al. (2011), but without any formal derivation. While
they were expected to be hyperbolic, it was found that the loss of hyperbolicity seemed
to occur for certain parameter values, well within the physically meaningful range. We
will address the topic of hyperbolicity below.

2.2. Particle transport model and fluxes

Equations 2.10 may be simplified by eliminating the explicit h dependence from the
equilibrium model. We carry this out by scaling z with h: s = z/h. Equations 2.10 are
then rewritten using φ(t, x; z) = φ(t, x;h(t, x)s) = φ̃(t, x; s), u(t, x; z) = u(t, x;h(t, x)s) =
ũ(t, x; s), and σ̃(t, x; s) = σ(t, x;h(t, x)s)/h(t, x)2 = µ(φ̃(t, x; s))ũ′(t, x; s); henceforth, the
prime denotes the differentiation with respect to s. The result is

∂th+ ∂xF (h, n) = 0 (2.11a)

∂tn+ ∂xG(h, n) = 0, (2.11b)

where the suspension and particle fluxes, F and G respectively, are written in terms of
φ̃ and ũ

F (h, n) =

∫ h

0

u(t, x; z)dz = h3

∫ 1

0

ũ(t, x; s) ds = h3f(φ0) (2.11c)

G(h, n) =

∫ h

0

φ(t, x; z)u(t, x; z)dz = h3

∫ 1

0

φ̃(t, x; s)ũ(t, x; s) ds = h3g(φ0). (2.11d)

It is also convenient to introduce the z-averaged particle volume fraction

φ0(t, x) =

∫ 1

0

φ̃(t, x; s) ds =
n(t, x)

h(t, x)
∈ [0, φm]. (2.11e)

Next, the equilibrium equations are rewritten as(
1 + C1

φ̃

φm − φ̃

)
σ̃φ̃′ + C2 − (C2 + 1)φ̃− ρsφ̃2 = 0, (2.11f )

σ̃′ = −(1 + ρsφ̃), (2.11g)

for 0 ≤ s ≤ 1, with the boundary condition σ̃(1) = 0; here,

C1 =
2(Kv −Kc)

Kc
, C2 =

2ρs cotα

9Kc
.

The equilibrium model, Eqs. 2.11f) and g), is solved for the intermediate variables σ̃ and
φ̃; ũ is recovered from σ̃ = µ(φ̃)ũ′ using the no-slip boundary condition at s = 0. These
profiles are then supplied to the transport equations, Eqs. 2.11a-e), to close the system:
the suspension and the particle fluxes are determined by the functions f and g of a single
real argument, which is found by solving Eqs. 2.11f) and g) for s ∈ [0, 1] and a given
value of φ0. We note that the cubic dependence of the fluxes F and G on h, reminiscent
of factors appearing in the thin film equation, e.g. see Kondic (2003), result from the
exact scaling invariance of the leading order ODEs, Eqs. 2.10c) and d).

For a given value of φ0, the solution to the system 2.11 is unique. Furthermore, there
exist two distinct families of non-negative solutions, depending on the value of the input
parameter φ0. The first consists of strictly decreasing solutions for φ̃, with φ̃(T̃ ) = 0,
where T̃ = T/h and 0 < T̃ < 1. For T̃ < s < 1, these solutions are continued with
φ̃(s) = 0. The second family consists of strictly increasing solutions for φ̃, with φ̃(s)→ φm
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Figure 2. Particle volume fraction profiles φ̃(s) for different values of α and φ0, resulting
in settled (solid lines) and ridged regimes (dashed lines): a) fixed α = 25◦ and various average

concentrations φ0, increasing in steps of 0.028 from 0 to φm (heavy dashed line) via φ̃crit = 0.476
(heavy solid line); b) fixed φ0 = 0.3 and different inclination angles α = (1, 30, 60, 90)◦.

as s → 1. Both types of solutions can be uniquely characterized by their corresponding
φ0 values. Here, the focus is solely on the first family of solutions, as it corresponds to the
settled regime (the second corresponds to the ridged regime). This regime is expected for
small values of α and φ0. The critical concentration, φ̃crit, separating the two extreme
regimes, is determined by the constant-concentration solution, i.e. setting φ̃′ = 0 in 2.11f),
and solving for the average particle volume fraction

φ̃crit = min

φm,
−(C2 + 1)

2ρs
+

√(
C2 + 1

2ρs

)2

+
C2

ρs

 . (2.12)

This defines the unstable well-mixed state. Figure 2 shows the two families of solutions
for φ̃, including the well-mixed state occurring for φ̃crit. The solutions are obtained
numerically, using a shooting method, see Murisic et al. (2011).

2.3. Dilute approximation

For small particle concentrations, i.e. φ, φ̃ � 1, we are able to compute the fluxes ana-
lytically. In this limit, the hyperbolicity of the conservation laws may also be confirmed
explicitly. Assuming φ0, φ̃(s) � φm, we linearize Eqs. 2.11f) and g) with respect to φ̃,
and, to the leading order, obtain

σ̃φ̃′ = −C2 0 ≤ s ≤ T̃ (2.13)

σ̃′ = −1 0 ≤ s ≤ 1, (2.14)

with σ̃(1) = 0. To the leading order in φ̃, the solution to this system of ODEs is

σ̃(s) = 1− s (2.15)

φ̃(s) =

{
C2(T̃ − s) 0 < s ≤ T̃
0 T̃ < s ≤ 1,

(2.16)

resulting in the average concentration

φ0 =

∫ 1

0

φ̃(s) ds =
C2T̃

2

2
. (2.17)
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By using σ̃ = µ(φ̃)ũ′ ≈ µ(0)ũ′, we are also able to find the velocity ũ(s) to the leading
order

ũ(s) =

∫ s

0

σ̃(r)

µ(φ̃(r))
dr =

∫ s

0

(1− r)
µ(0)

(
1 +O(φ̃)

)
dr =

(
s− s2

2

)
+O(φ̃).

Therefore, using (2.17), the leading order for the particle flux is

g(φ0) =

∫ 1

0

φ̃(s)ũ(s) ds =

∫ T̃

0

C2(T̃ − s)
(
s− s2

2

)
ds

= C2

(
T̃ 3

6
− T̃ 4

24

)
=

√
2

9C2
φ

3/2
0 +O(φ2

0).

Also, the leading order for the suspension volume flux is

f(φ0) =

∫ 1

0

ũ(s) ds =
1

3
.

Finally, to the leading order, the hyperbolic transport laws in the dilute limit are given
by

∂th+ ∂x

(
h3

3

)
= 0, (2.18a)

∂tn+ ∂x

(√
2

9C2
(nh)3/2

)
= 0. (2.18b)

We note that this clarifies the apparent loss of hyperbolicity for the conservation laws
discussed in Murisic et al. (2011). In particular, in Murisic et al. (2011), the suspension
and particle fluxes were fitted from the solutions of the equilibrium problem via the least-
squares polynomials in h and φ0, i.e. using only integer powers of h and φ0. Our results,
in-particular Eqs. 2.18 show that such an approach is rather problematic, as, at least in
the dilute limit, fractional powers in h and φ0 are required in order to accurately capture
the behavior of the fluxes. Hence, we conclude that the loss of hyperbolicity in Murisic
et al. (2011) is caused solely by the ill-suited approach in constructing the fluxes, rather
than the structure of the conservation laws themselves; this point is confirmed below.

One may compute the solutions of Eqs. 2.18 with the initial data h(0, x) = χ{0 ≤ x ≤
1}, n(0, x) = f0h(0, x), and some given value of f0, using the finite-volume method. But,
since φ0 is small for the dilute approximation to be valid, we abbreviate ξ = 1/

√
2C2

and solve Eq. 2.18a) for h independently to get, for t ≥ 0

h(t, x) =


1 t ≤ x ≤ x`(t)√
x/t 0 < x < min

(
t, x`(t)

)
0 else,

(2.19)

where the liquid front position is

x`(t) =

{
1 + t/3 0 ≤ t ≤ 2/3(

9t
4

)1/3
2/3 < t.

This is the well-known solution computed by Huppert (1982). Next, we may use this
solution to find the solution for n as follows. First note that for early times, the solution
for n also consists of a rarefaction fan for 0 < x < t, connected to a constant with value

f0 in t ≤ x ≤ 1 + ξf
1/2
0 t. For larger values of x, the integrated particle volume fraction
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Figure 3. Exact vs. numerical solution at t = 1 for ξ = 1 and f0 = 0.1

n vanishes. The evolution equation for n may be written as

∂tn+
2ξ

3
∂x
(
h(t, x)n(t, x)

)3/2
= 0. (2.20)

Note that by the assumption of dilute regime, we always have xp < x`. Clearly, the
problem amounts to determining the shape of the rarefaction fan for n. To resolve it,
we assume thet n(t, x) = N(ω), where ω = x/t is a rarefaction fan starting at zero, i.e.
ω > 0. Substituting this ansatz into Eq. 2.20 gives the following ODE for N

−2ω5/4N ′(ω) + ξ
√
N(ω)

[
N(ω) + 2ωN ′(ω)

]
= 0. (2.21)

The solution is

N(ω) = ξ−1

(
c− 2

√
c4ξ2 + c3ξ

√
ω

ω

)
+

2c2√
ω
, (2.22)

where c is an undetermined constant of integration. We note that this solution satisfies
N(ω) → 0 as ω → 0. For our purposes, we may fix c by requiring that the continuity is
obeyed, i.e. that n(t, t) = N(1) = f0, which results in c = f0ξ/(1− 2ξ

√
f0). Finally, this

gives us our solution

n(t, x) =


f0 t ≤ x ≤ xp(t)
N(x/t) 0 < x < min

(
t, xp(t)

)
0 else,

(2.23)

and the particle front position is xp(t) = min(1 + 2ξ
3 f

1/2
0 t, x̄p(t)), where x̄p satisfies∫ x̄p/t

0

N(x/t) dx = f0. (2.24)

Using x̄p/t→ 0 as t→∞, and N(ω) =
√
ω/(4ξ2) +O(ω) we get x̄p(t) = 61/3(ξ4f2

0 t)
1/3.

Hence,

lim
t→∞

xp(t)

x`(t)
=

(
24ξ4f2

0

9

)1/3

.

We note that the value of this limit is independent of the choice of the integration constant
c appearing in the solution of the rarefaction-fan. Figure 3 shows typical close agreement
between the exact and the numerical solutions of Eqs. 2.18.

Next, we study the hyperbolicity of Eqs. 2.11a) and b), and the parameter dependence
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Figure 4. Discriminant D vs. φ0/φm for inclination angles α = (5, 30, 60, 89)◦.

of the suspension and particle volume fluxes, f and g respectively, by solving Eqs. 2.11f)
and g) numerically for φ̃(s) and σ̃(s).

2.4. Hyperbolicity

The transport problem reads

∂th+ ∂x
(
h3f(nh )

)
= 0 (2.25)

∂tn+ ∂x
(
h3g(nh )

)
= 0, (2.26)

after opting for f and g rather than F and G, and using the definitions in Eqs. 2.11c)
and d). The Jacobian associated with the above system of conservations laws is

J = h2

(
3f − φ0f

′ f ′

3g − φ0g
′ g′

)
,

and the discriminant of the corresponding characteristic polynomial is

D = h4[(g′ + φ0f
′ − 3f)2 + 4f ′(3g − φ0g

′)].

The hyperbolicity of the transport problem is ensured when D ≥ 0. We note that the
Jacobian and the discriminant are obtained using the intermediate variable n = φ0h,
where the Jacobian is derived in terms of the (h, n) problem, and then rewritten again
in terms of h and φ0. This is rather convenient because h may be scaled out of the
discriminant, and what remains is a condition for hyperbolicity on f(φ0), g(φ0), and their
derivatives. Figure 4 shows that the discriminant remains strictly positive for all φ0 values
within physically meaningful range, φ0 ∈ [0, φm], and all tested values of the inclination
angle. Therefore, we conclude that our system of conservation laws, Eqs. 2.11a) and b),
is a well-posed hyperbolic problem for the variables h and n.

We proceed by studying the suspension and particle volume fluxes, f and g respectively,
for various parameter values, by solving Eqs. 2.11f) and g) numerically for φ̃(s) and
σ̃(s). Fluxes f and g for various values of the inclination angle α are shown in Fig. 5.
For small values of α, the suspension volume flux f decreases as φ0 increases due to a
corresponding increase in the effective suspension viscosity. Only for large values of α,
the flux f increases with φ0, due to to the increase in the corresponding suspension mass
and gravitational shear force. For φ0 → 0, one recovers the standard lubrication flux,
F = h3/(3µl), while for φ0 → φm, the suspension flux tends to zero, F → 0, due to the
fact that µ→∞. The particle volume flux g increases with φ0, due to the increase in the
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Figure 5. Fluxes f in a), and g in b) for inclination angles α = (5, 30, 60, 89)◦.

particle content. However, the increase is sublinear since increasing φ0 causes a decrease
in the flow velocity, u, as already observed for flux f . Therefore, g must be zero at both
φ0 = 0 and φ0 = φm, as evidenced by Fig. 5.

The transition from the settled regime to the ridged regime occurs when the average
particle velocity exceeds the average suspension velocity, i.e. when g/φ0 ≥ f or equiva-
lently, when ∫ 1

0
φ̃ũ ds∫ 1

0
φ̃ ds

≥
∫ 1

0

ũ ds.

With ũ being an increasing positive function and φ̃ > 0, this transition occurs when φ̃
changes monotonicity, which happens at the value φ̃crit given by Eq. 2.12.

3. Experiments

We carry out experiments with gravity driven particle-laden thin films using an inclined
solid setup. A thorough description of this apparatus was included in Murisic et al. (2011);
therefore, we only list the main specifications here.

The apparatus consists of an acrylic track, 90cm long, 14cm wide, with 1.5cm-tall side
walls. A gated reservoir with acrylic walls is situated at one end of the track (the top); its
interior is 14cm wide and 10cm long; the release gate is manually operated. The collecting
tank is at the other end of the track (the bottom). The typical thickness of the particle-
laden thin film in our experiments is H ∼ 1cm. The inclination angle of the track, α, may
be manually adjusted within the range 5−80◦ (with precision within a few percent) . The
suspending liquid we use is PDMS (AlfaAesar) with the kinematic viscosity ν` = 1000 cSt
and density ρ` = 971 kgm−3. The particles are smooth spherical glass beads (Ceroglass)
with diameter d = 337µm (standard deviation ≈ 26%) and density ρp = 2475 kgm−3.
The decision to use this particular particle size is influenced by the need to fulfill the
requirement ε � η2 � 1, derived in §2; the other available sizes either fail in this task
(smaller particles), or make the continuum assumption questionable (large ones).

We focus on the constant suspension volume experiments: each experimental run is
carried out using 110ml of suspension, measured initially. The particles are dyed using
water-based food coloring in order to enhance their visibility, and are then allowed to dry
overnight. The suspensions are prepared by first weighing the two phases separately (φ0

fraction of particles and 1−φ0 fraction of liquid), and then mixing them manually using
a stirring rod; the mixing procedure is carried out slowly in order to prevent entrapment
of air bubbles. A uniformly mixed suspension is then poured into the reservoir, the gate
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is raised, and the suspension in allowed to flow down the incline. The total suspension
volume is an important parameter, especially in our model. We note that some losses do
occur: ≈ 25% of the initial volume is inevitably lost, of which ≈ 20% accounts for the
suspension remaining in the mixing container after pouring, and further 5% remain on
the reservoir walls after gate release. The volume loss is the largest source of systematic
error in the experiments; we take this into account in the next section when we carry out
numerical simulations of our model. The suspension remains well-mixed during the short
time-interval between pouring into the reservoir and raising the gate. In fact, in all of
our experiments, the separation of phases, i.e. settling, would occur only some distance
down the incline, depending on the configuration.

A large number (>60) of experimental runs have been carried out over a long pe-
riod of time. With the environment in the lab (air temperature and relative humidity)
maintained at a constant level via an air-conditioning unit, we have developed a simple
procedure for preparing the solid substrate before each day of experiments, to ensure
identical wetting properties and reproducibility of results for all the runs. In addition,
we want to minimize the occurrence of the fingering instability, which complicates front
tracking and subsequent analysis. The procedure is as follows. The track surface is first
cleaned using a dish-washing liquid. This is followed by allowing 110ml of clear 1000 cSt
PDMS to flow down the incline at α = 45◦ for 1 hour, leaving behind a thin precursor
layer. Without recording any data yet, 110ml of dilute suspension (φ0 = 0.2) is then
allowed to flow down the incline until it drains into the tank. The left-over particles and
liquid are carefully cleaned using a rubber squeegee. The track is now ready for recorded
experimental runs. The squeegee is used after every subsequent run. Each run is repeated
to confirm the reproducibility of the results. We note that, while this protocol leads to a
good reproducibility for the settled regime, this may not be the case when much denser
suspensions are used (i.e. the ridged regime).

In this study we are interested in the details of the settled regime. We record the
separation of the particle and liquid phases and monitor the motion of the two distinct
fronts down the incline, with the clear liquid front moving ahead of the particle one.
In order to capture the settled regime experimentally, we choose the parameter values
based on the extensive experiments carried out in Murisic et al. (2011). In particular,
we concentrate on small to moderate values of the bulk particle volume fraction and
inclination angle: φ0 = 0.2, 0.3, 0.4 and α = 5◦ . . . 40◦ in 5◦-increments. The experimental
data consists of high-definition videos, captured in a 1920×1080-pixel resolution at 25 fps.
The videos are recorded using a Canon EOS Rebel T2i digital SLR camera utilizing a
Canon EF-S 18-55mm f/3.5-5.6 wide-angle lens. The device is mounted on a tall tripod,
so that the camera is ≈ 1m above the flow and ≈ 50cm below the release gate, while the
lens surface is roughly parallel to the track surface. This allows us to capture the whole
length of the track with minimal distortion. Each flow is recorded from the time-instant
it is released from the reservoir, until the clear liquid front reaches the lower end of the
track. In our analysis, we only consider the time-interval starting with the first occurrence
of the two distinct fronts. Typically, this amounts to 12− 25min of evolution, depending
on φ0 and α values. The videos are then dissected, extracting individual images at a rate
of 0.2 fps. The image post-processing is carried out using a specialized code in MATLAB
(MathWorks). Due to particle coloring, the two fronts are easy to distinguish. Also, the
preparation of the solid substrate leads to fairly straight fronts with minimal fingering of
the clear liquid front. The code identifies the two fronts in each image, picks a reference
point on each front, away from the side-walls, and tracks its motion in subsequent images.
The post-processing output consists of the data on the time-evolution of the clear liquid
and particle fronts. We estimate that the total error in this procedure is ±5%.
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Figure 6. The suspension flow with φ0 = 0.3 and α = 25◦ at different stages; time increases
left to right; the black and white dashed lines show the clear liquid and particle front positions;
the black tick-marks on the side of the track are 5cm apart; darker regions in the particulate
bed indicate higher particle numbers.

a)
0 5 10 15 20

0

20

40

60

80

time in min

d
is

ta
n
ce

 i
n
 c

m

 

 

x
l
 φ

0
=0.2

x
p
 φ

0
=0.2

x
l
 φ

0
=0.3

x
p
 φ

0
=0.3

b)
0 5 10 15 20

0

20

40

60

80

time in min

d
is

ta
n
c
e
 i

n
 c

m

Figure 7. Time dependence of the liquid front position, x`, and the particle front position, xp, in
the experiments with: a) φ0 = (0.2, 0.3) and α = 25◦; and b) φ0 = 0.2 and α = (10, 20, 30, 40)◦,
where the full lines denote xp and the dashed ones x`; larger α values result in steeper curves.

A typical evolution is shown in Fig. 6. The qualitative experimental observations are
as follows. Initially, a uniform (well-mixed) suspension moves down the incline. Toward
the end of this initial transient, denoted by t ∈ [0, ttrans], a transition occurs, where two
distinct fronts form, and the clear liquid front moves ahead of the particle front. We find
that the duration of the transient regime increases with α; it also increases with φ0. The
separation of phases is detectible once the suspension front has moved 15− 40cm down
the incline, depending on the values of α and φ0. Furthermore, for small angles, α < 10◦,
the motion of the particle front practically comes to a halt, at least on the timescale
of our experiments. The increase in the value of α leads to an increase in the ratio of
the front positions toward unity: xp(t)/x`(t) → 1. Naturally, above a critical value of
α, defined by 2.12, the flow undergoes a transition toward the ridged regime, where the
particles move to the contact line of the flow; in our experiments, we stay well away from
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Figure 8. Experiment vs Simulation for φ0 = 0.2 and: a) α = 10◦; b) α = 15◦; c) α = 20◦; and
d) α = 25◦. The dashed line is the liquid front x`(t), whereas the full line shows the particle
front xp(t).

this transition. Figure 7 shows in some detail the dependence of the evolution of x` and
xp on the values of α and φ0.

We note that ttrans turns out be an important parameter in our model, as it effectively
determines the time-interval of validity of our equilibrium assumption in the z-direction,
see §4 below. In our experiments, the unsteadiness of the flow may in fact persist beyond
the time-instant when the two distinct fronts are first detected by our apparatus. Hence,
we are only able to accurately measure a lower bound for ttrans.

We proceed by carrying out the numerical simulations of our model equations, Eqs. 2.11,
and comparing the model predictions with the experimental data for different α and φ0

values.

4. Comparison: model predictions vs. experimental data

The governing system in 2.11 is solved numerically next, in order to carry out a quanti-
tative comparison with the experiments. The equilibrium portion, namely the boundary
value problem in 2.11f) and g), is solved for intermediate quantities φ̃ and ũ using a
shooting method with Runge-Kutta; the dynamic transport equations, i.e. 2.11a-d), are
solved for the main variables h and n using the finite-volume method. The initial data
we use for this purpose is

h(0, x) =

{
h0 −dx < x < 0

0 else
, n(0, x) = φ0h(0, x),
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Figure 9. Experiment vs Simulation for φ0 = 0.3 and: a) α = 10◦; b) α = 20◦; c) α = 25◦; and
d) α = 30◦. The dashed line is the liquid front x`(t), whereas the full line shows the particle
front xp(t).

representing the well-mixed suspension at t = 0, like in the experiments. The average
concentration, 0 < φ0 < φm, in the simulations is adjusted to correspond to each partic-
ular experiment, and the quantity h0 is such that the total volume is V = 0.75 ·110ml =
h0 dx dy. As noted earlier, the factor 0.75 accounts for the loss of suspension volume dur-
ing the preparation of each experiment. Here, the width of the track is dy = 14 cm, and
dx = 10 cm, the length of the reservoir, is a parameter in the initial data. We also quan-
tify the transient stage: the suspension travels up to ≈ 30 cm during the time-interval
we denote [0, ttrans] before the clear liquid front becomes visible. For 0 ≤ t ≤ ttrans, the
assumption of equilibrium for the suspension in the z-direction is unlikely to hold. To
overcome this issue, we use the colloidal limit, η → 0, to derive the advection equation
for h and n

∂th+ ∂xF̃ = 0, ∂tn+ ∂x
(
φ0F̃

)
= 0, (4.1)

with F̃ = (1 + φ0ρs)h
3/
(
3ν̄
)

and ν̄ = (1−φ/φm)−2. We note that n is advected trivially,
and is given by n(t, x) = φ0h(t, x). Hence, in order to account for the transient stage,
we solve Eqs. 4.1 for 0 < t ≤ ttrans, while the system 2.11 is solved for later times,
t > ttrans. The exact value of ttrans is difficult to measure experimentally; instead we use
a lower bound (i.e. time-instant of the first detection of distinct fronts) provided by our
experimental data.

Figure 8 shows comparison between the model predictions and the experimental data
for fixed average concentration φ0 = 0.2, and a few different values of the inclination
angle, α = (10, 15, 20, 25)◦. The agreement is good, both in the transient stage and
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Figure 10. Experiment vs Simulation for φ0 = 0.4 and: a) α = 15◦; and b) α = 20◦. The
dashed line is the liquid front x`(t), whereas the full line shows the particle front xp(t).

for later times, when the equilibrium assumption is valid. We notice, that during the
transient stage, the colloid approximation leads to a slight overestimation of the mobility
of the fronts, particularly the particle one. The comparison is carried out for t < 20min
only, due to the influence of the transient in the simulations: the overestimation of x`(t)
and xp(t) for 0 < t ≤ ttrans hinders the model prediction for long-time behavior of the
two fronts. Hence, further analysis of the transient stage and more precise measurements
of ttrans are required in order to accurately predict the motion of the fronts for longer
time-intervals. Figures 9 and 10 show equivalent results for φ0 = 0.3 and φ0 = 0.4, and
various values of α; they both indicate similar degree of agreement between theory and
experiments as in the case of φ0 = 0.2. We note that only small values of α are used with
φ0 = 0.4, as larger values result in ridged regime. Figure 10 indicates that the model’s
overestimation of the mobility of the fronts during the transient phase is particularly
pronounced for φ0 = 0.4. Other factors may also affect the model prediction for denser
suspensions, see discussion below.

5. Conclusion

In this paper, we focus on the settled regime observed in particle-laden thin-film flows
on an incline. In this regime, particles settle to the solid substrate and the clear liquid
film flows over the sediment. Two distinct fronts form: the slower particle and the faster
clear liquid one.

We first derive a continuum model, starting from the Stokes’ equations for the sus-
pension and a transport equation for the particles. The particle model is a diffusive one,
including the effects of shear-induced migration and hindered settling due to gravity. We
apply the lubrication-style scales and carry out an asymptotic analysis of the resulting
equations. Our main assumption is that the particle distribution in the z-direction is in
equilibrium, i.e. that the corresponding dynamics occurs on a rapid time-scale so that
the steady-state is quickly established and the total particle flux in the z-direction is
zero. Hence, we are able to reconstruct the z-profiles for the particle volume fraction and
the suspension velocity. Our asymptotics approach then allows us to connect the lead-
ing order equilibrium model to the slow dynamics of particle and suspension transport
down the incline, in the x-direction. We switch to the averaged quantities, the film thick-
ness and the particle number, which obey a coupled system of advection equations (a
pair of hyperbolic conservation laws), thereby closing the approximation and completing
the theoretical framework. We proceed by confirming the hyperbolicity of the transport
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equations, and analyzing the dilute limit for which we derive an analytic solution, and
study the behavior of the particle and the clear liquid fronts in the finite volume case as
t→∞.

Next, we carry out experiments using finite fixed volume suspensions, consisting of glass
beads and PDMS. In the experiments, we vary the bulk particle volume fraction and the
inclination angle of the solid substrate within the permitted range for the settled regime.
Our experimental setup allows us to detect the particle and the clear liquid fronts, and
precisely monitor their motion down the incline. We also detect a short initial transient
phase, in which the mixture remains well-mixed, and identify the loss of volume in the
experiment preparation as the single largest source of systematic error.

Finally, we compute the numerical solutions of our governing system of equations,
and compare the model predictions for the case of finite suspension volume with the
experimental data. To take into account the transient phase observed in the experiments,
the colloidal limit for our model is also considered: we use the colloidal model to capture
the transient stage, and then switch to the full model for later times. The result is a
good agreement between the theory and the experiments, especially for lower values of
average particle volume fraction, φ0. For larger values of this parameter, the influence of
the transient regime becomes more significant.

In order to improve our model, a detailed investigation of the transient phase is re-
quired, including both careful experiments and a theoretical approach. In particular, an
important question is how early the equilibrium in the z-direction may be assumed. This
involves more precise experimental measurements of the transient time ttrans. Another
interesting questions is the validity of the hinderance model and the Krieger-Dougherty
µ(φ) relation for denser suspensions. Future work should also include higher order terms
in the dynamic equations, e.g. the terms corresponding to the capillary and normal
gravitational forces. This would allow for a comprehensive study of the different settling
regimes, the evolution of the contact line region, and the details of the fingering instability
occurring in these flows.
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