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Abstract In this paper, we deal with a hydraulic reservoir optimization problem with uncertainty on
inflows in a joint chance constrained programming setting. In particular, we will consider inflows with
a persistency effect, following a causal time series model, and examine the impact of the ”Gaussian”
assumption for such inflows. We present an iterative algorithm for solving similarly structured joint
chance constrained programming problems that requires a Slater point and the computation of gradients.
Several alternatives to the joint chance constraint problem are presented. In particular, we present an
individual chance constraint problem and a robust model. We illustrate the interest of joint chance
constrained programming by comparing results obtained on a realistic hydro-valley with those obtained
from the alternative models. Despite the fact that the alternative models often require less hypothesis
on the law of the inflows, we show that they yield conservative and costly solutions. The simpler models,
such as the individual chance constraint one, are shown to yield insufficient robustness and are therefore
not useful. We therefore conclude that Joint Chance Constrained programming appears as a technique
offering a good trade-off between cost and robustness and can be tractable for complex realistic models.
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1 Introduction

An important optimization problem in energy management, known as the ”Unit-Commitment Problem”,
aims at computing the production schedule that satisfies the offer-demand equilibrium at minimal cost.
That schedule indicates production levels for each production unit in a hydro-thermal system. Each unit
is subject to many complex technical constraints. This fact, together with the fact that the offer-demand
equilibrium constraints are coupling constraints and link all these various and numerous units together,
leads to the conclusion that the Unit commitment problem is often large-scale and difficult to solve. In
order to tackle these large scale problems, the coupling constraints are often dualized, using Lagrangian
techniques, leading to an effective price decomposition scheme ([2,6]). In this setting, the hydraulic
valley optimization problem can be seen as a sub-problem of the general Unit-Commitment problem.
Alternatively, one can interpret this problem as an optimization against market-prices. Complex dynamic
constraints on watershed controls introduce combinatorial aspects in this sub-problem, making it difficult
to solve. For this reason, uncertainty is often neglected, even though decisions are taken at least one day
in advance.

In this paper, we deal with a hydraulic reservoir optimization problem with uncertainty on inflows in
a joint chance constrained programming setting. We wish to examine a model wherein uncertainty is
an important part of the model. We will however neglect the combinatorial aspect in this paper. Since
introducing uncertainty in the global Unit-Commitment problem will lead to a very large scale and
complex model, we will focus for the moment on the sub-problem consisting of a hydraulic valley.

Introduced by [1], probability constraints are quite an appealing tool for dealing with uncertainty. In
particular, when uncertainty arises in physical constraints, since they also offer a simple interpretation.
A classical introduction to the theory and numerical treatment of chance constraints can be found in
[11]. In the same monograph, one can find convexity results, for uncertainty separated from decisions and
for a large class of distributions including the multivariate Gaussian one. Since their first introduction,
chance constraints have become quite common in hydro valley management ([9,3,4,8,10,16,15,14]), but
often individual chance constraints are used and not joint chance constraints. Though a very appealing
approximation, individual chance constraints unfortunately do not offer sufficient robustness (see [14]).

This paper is organized as follows. In section 2, we present our model for hydro reservoir management,
where combinatorial constraints are neglected and random inflows are introduced. We give a detailed
description of a real hydro valley, and present the main optimization problem. As the uncertainty on
inflows is concerned, many statistical models are based on a deterministic trend (potentially dependent
on explanatory variables) and a causal noise process. Since convexity results exist for specific classes
of randomness and in particular Gaussian ones, it seems tempting to place ourselves in such a setting.
Restricting uncertainty laws to such a setting, might seem restrictive at first. However, we will show that
a large class of models is available, i.e., the class of causal time series models with Gaussian innovations
([13]).

In section 3, we derive algorithms for dealing with our model. One difficulty for solving joint chance-
constraint models is to dispose of a tractable representation of the gradient of such constraints. This is
the case for ”Gaussian” rectangles as shown in ([14]). We present here an iterative algorithm for solving,
in the Gaussian setting, joint chance constrained programming problems that requires a Slater point
and the computation of gradients. Several alternatives to the joint chance constraint problem are then
presented. In particular, we present an individual chance constraint problem and a robust model.

In section 4, we report results obtained when solving these various models on a realistic instance of a
hydro-valley management problem. The interest of joint chance constrained programming is illustrated
by comparing results obtained on this hydro-valley with those obtained from the alternative models.

An algorithmic perspective and some auxiliary lemmas are given in section 5. This section also contains
a slight extension of the theoretical results obtained in [14]. Finally, conclusions are drawn in section 6.
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2 Problem Description

In this section we will give a description of the hydro reservoir management problem. We will consider
a discretized time horizon. To this end let τ denote the set of (homogeneous) time steps. Let ∆t be
this time step size expressed in hours. Occasionally T will denote the last time step. We will begin by
providing problem constraints and the objective function. We will conclude with a paragraph highlighting
the structure of the problem.

2.1 Problem Constraints

2.1.1 Topology

A hydro valley can be seen as a set of connected reservoirs and associated turbines. We can therefore
represent this with a directed graph. Let N be the set of nodes and let A (of size |N | × |N |) be the
connection matrix, i.e., An,m = 1 whenever water released from reservoir n will flow into reservoir m. We
will assume that D is the flow duration matrix, i.e., Dm is the amount of time (measured in time steps)
it takes for water to flow from reservoir m to its child. Let T :=

{

gi , i = 1, ..., NT

}

denote the set of

turbines and P :=
{

pi, i = 1, ..., NP

}

denote the set of pumping stations. We furthermore introduce the
mapping σT : {1, ..., NT } → N (σP : {1, ..., NP} → N ) attributing to each turbine (pumping station)
the reservoir number to which it belongs. We will also introduce the sets A(n) = {m ∈ N : Am,n = 1}
and F(n) = {m ∈ N : An,m = 1}. The set A(n) is empty for top reservoirs and the set F(n) for bottom
reservoirs.

2.1.2 Controls

We will assume that each turbine (and pumping station) can be controlled for each time step. To this
end we introduce the variables xi(t) for each t ∈ τ and i = 1, ..., NT . In a similar way we introduce the
variables yi(t) for the pumping stations. The units are in cubic meters per hour, i.e., m3/h. Furthermore
we assume that each of these variables are bounded from below by zero and from above by xi (yi

respectively).

2.1.3 Water Values

For water-values we will present 2 models. One of these models provides a very detailed cost structure
allowing us to integrate inter-temporal preferences. These could enforce withholding turbining on usually
calm periods and save this water for usually more perturbed periods. This model could be of more
interest for larger time horizons. We will compare this last formulation with a third possible formulation.
Unfortunately the latter model adds non-convexity and hence will be discarded. In order to show the
difference between these formulations, we will expose the main ideas by placing ourselves in the setting
of a single reservoir with a single compartment.

The first model values (the differential of) volume with a water value w, i.e., we value w(V (T )−V (0)), the
latter term being a constant, it can be neglected. So it comes down to the valuation of the end-volume:

wV (T ). (1)

A natural extension of this first model, is the valuation of volume at each time step:

∑

t∈τ

wtV (t). (2)
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The effect will be that the model will favor periods, wherein water values are high with respect to
periods where they are globally lower. As such the model will be incited to keep water for later troubled
periods. This model therefore satisfies the above requirement of allowing us to integrate inter-temporal
preferences. Whenever compartments are added, this model is convex, just like the previous model
(Details are given in section 2.1.5 below).

This last model formulation can be compared with one wherein we would value the valuation of volume
changes:

∑

t∈τ

wt(V (t) − V (t− 1)). (3)

By removing the valuation of the initial volume w0V0 from (1) and rewriting, one can obtain the following
identity

wTVT − w0V0 =
∑

t∈τ

wt(V (t) − V (t− 1)) +
∑

t∈τ

(wt − wt−1)V (t− 1),

showing that whenever changes in valuation induced by changes in water-values are compensated for,
we end up with the simple above model. One can obtain model (3) from (2) by simply subtracting
the current valuation of the past volume. This shows that one can move from one model to another
by compensating for various features. Unfortunately, when adding compartments, model (3) will yield
a non-convex model (Details can be found in section 2.1.4). Model (2) will give a simple extension of
model (1). Moreover, similarly to model (3), it will allow us to incorporate temporal effects within the
optimization. Since the model is convex, we believe that we should retain this model instead of the
non-convex one.

2.1.4 Time and volume dependent water values

Our aim is to set up a model in which volumetric difference of adjacent time steps are valued with a
water value that depends on time and volume. The goal is two-fold. On one hand, we wish to value the
final volume, in order to prevent optimization to be carried out at the expense of later time periods. On
the other hand, water-values may reflect temporal preferences, such as withholding turbining on usually
calm periods for more perturbed periods. This is of particular interest when the time horizon of the
model increases and reflects, say a month. In this section we will show that model (3) is non-convex.
We therefore suggest using model (2) instead, which preserves the above highlighted features and is a
simple extension of the model detailed in section 2.1.5 below.

We subdivide the levels of each reservoir into a finite number of values from bottom to top:

V n
0 , . . . , V

n
Kn

∀n. (4)

Each compartment
[

V n
i−1, V

n
i

)

is assigned a water value Wi(t)
n (in e/m3), i = 1, ...,Kn. These are

assumed to be decreasing:

Wn
i−1(t) > Wn

i (t) ≥ 0 ∀n ∀i = 1, . . . ,Kn ∀t. (5)

We will reason with respect to changes in expected volume E (V n(t)) induced by turbining and pumping
at time t ∈ τ . These changes will be valued against the water values.

For reservoir n, let i∗t = max {i|E (V n(t)) ≥ V n
i }+1. Let zn

x,i(t) represent negative variations of volume
with respect to expected volume E (V n(t)) (i.e., turbining) and let zn

y,i(t) denote positive variations (i.e.,
pumping), where these variations are restricted to the interval [V n

i−1, V
n
i ). This means:

V n(t+∆t) = V n(t) +

Kn
∑

i=1

(zn
y,i(t) − zn

x,i(t)).
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Since zn
x,i(t) is defined as the negative variations with respect to the expected volume E (V n(t)), one

has zn
x,i(t) = 0 for all i > i∗t . Similarly one obtains zn

y,i(t) = 0 for all i < i∗t . Moreover, one has

zn
x,j(t) > 0 ⇒ zn

x,i(t) = min {V n
i ,E (V n(t))} − V n

i−1 ∀j < i ≤ i∗t (6)

zn
y,j(t) > 0 ⇒ zn

y,i(t) = V n
i − max

{

V n
i−1,E (V n(t))

}

∀j > i ≥ i∗t . (7)

Therefore, the following term values this water differential:

Kn
∑

i=1

Wn
i (t)(zn

x,i(t) − zn
y,i(t)). (8)

The following constraints

0 ≤ zn
x,i(t) ≤ max(E (V n(t))−V n

i−1, 0) ∀i ∀n

0 ≤ zn
y,i(t) ≤ max(V n

i − E (V n(t)), 0) ∀i ∀n,

make sure that zn
x,i(t) = 0 for i ≥ i∗t +1, and zn

y,i(t) = 0 for i ≤ i∗t −1. One can see that the requirements
(6) and (7) are automatically satisfied by hypothesis (5) and objective function (8).

Now these constraints can be transformed into quadratic constraints by applying Lemma 31. The same
lemma also allows us to conclude the non-convexity of this model (3).

2.1.5 Volume dependent water values

Our aim is to set up a model which evaluates the expected amount of water in the reservoir at the end
of the optimization horizon2. This is necessary in order not to carry out the optimization at the expense
of later periods of time. A possible way to do so is to subdivide the levels of each reservoir into a finite
number of values from bottom to top as in (4).

Each compartment
[

V n
i−1, V

n
i

)

is assigned a water value Wn
i (in e/m3) such that

Wn
i−1 > Wn

i ≥ 0 ∀n∀i = 1, . . . ,Kn. (9)

The value of the expected final water level E (V n(T )) of reservoir n is then simply the cumulative value
of water in the compartments below:

∑

i≤i∗

Wn
i (V n

i − V n
i−1) +Wn

i∗(E (V n(T ))−V n
i∗), i∗ := max{i|E (V n(T )) ≥ V n

i }.

Note that this value is an increasing function of the expected final level EV n(T ) despite the fact that
water values are strictly decreasing from bottom to top.

Now, in order to avoid combinatorial arguments concerning the index i∗, we introduce auxiliary variables
zn
i indicating for each reservoir n the amount of water in compartment

[

V n
i−1, V

n
i

)

. Of course, since all
compartments have to be completely filled up to i∗, one has that

zn
i =







V n
i − V n

i−1 i = 1, . . . , i∗

E (V n(T ))−V n
i∗ i = i∗ + 1

0 i = i∗ + 2 . . . ,Kn

∀n. (10)

1 In section 2.1.7 we will derive a linear equation for E (V n (t)) in an extended problem vector x

2 In practice, one would evaluate the difference of the final and initial volume. The latter adds a constant to the objective
function and can theoretically be omitted. In practice, it may generate some numerical difficulties, especially when large
volumes are valued and turbining/pumping capacity is small compared to the volume. In that case, relative changes in
valuation induced by the controls are easily considered negligible. Moreover, the constant can easily be added.
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Then, the value of the final water level in reservoir n equals

Kn
∑

i=1

Wn
i z

n
i ∀n. (11)

We claim that the relations (10) for variables zn
i can be replaced by the following relations in which the

crucial index i∗ is absent:

Kn
∑

i=1

zn
i = E (V n(T ))−V n

0 ∀n (12)

0 ≤ zn
i ≤ V n

i − V n
i−1 ∀n∀i = 1, . . . ,Kn. (13)

The argument is as follows: as part of the overall objective function in our problem as introduced in
(18) below, we shall maximize the value of the final water level (11). Given the strictly decreasing order
of water levels in (9) (from bottom to top), it is clear from (12) that the upper inequality in (13) will
be satisfied as an equality as long as possible and that only the most upper compartment may not be
completely filled. This of course is equivalent with (10) but avoiding the explicit description of that most
upper compartment.

Since the initial volume V n(0) is known in advance, one can define variables zn
0,i in a similar way as zn

i .
It then follows that

Kn
∑

i=1

Wn
i (zn

0,i − zn
i )

is the cost of used water. The valuation induced by
∑Kn

i=1W
n
i z

n
0,i is in fact a constant and can be omitted.

2.1.6 Random Inflows

We will assume that inflows (in m3/h) in reservoirs are the result of some stochastic process. Let An(t)
denote this stochastic process for reservoir n. Not all reservoirs will have stochastic inflows, some of
them will have deterministic inflows. This can be explained by the fact that top reservoirs have random
inflows due to the melting of snow in the high mountains, whereas rain can be neglected for lower
reservoirs. Let N r ⊆ N denote the set of reservoirs receiving random inflows. We will assume that the
stochastic inflow process is the sum of a deterministic trend sn

t and a causal process ([13]) generated by
Gaussian innovations. To this end let ζn(t) be a Gaussian white noise process, where (ζk1(t), ..., ζkl(t))
is a Gaussian random vector of zero average and variance-covariance matrix Σ(t) ({k1, ..., kl} = N r).
We will assume independence between time steps of the ζ vector. Since An(t) is a causal process, we can
write it as follows

An(t) = sn
t +

∞
∑

j=0

ψn
j ζ

n(t− j) = sn
t +

∞
∑

j=t

ψn
j ζ

n(t− j) +

t−1
∑

j=0

ψn
j ζ

n(t− j),

for some coefficient vector ψn. We will assume that randomness before t = 0 is known and as such we
can assume w.l.o.g. that the random inflow process can be written as

An(t) = sn
t +

t−1
∑

j=0

ψn
j ζ

n(t− j). (14)
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2.1.7 Flow constraints and Volume bounds

Each reservoir is subject to flow constraints induced by pumping and turbining. The following equilibrium
constraint applies

V n(t) = V n(t− 1) +
∑

m∈A(n)

∑

i∈σ
−1
T

[m]

xi(t−Dm)∆t−
∑

i∈σ
−1
T

[n]

xi(t)∆t (15)

+
∑

m∈F(n)

∑

i∈σ
−1
P

[m]

yi(t)∆t−
∑

i∈σ
−1
P

[n]

yi(t)∆t+ sn
t ∆t+

t−1
∑

j=0

ψn
j ζ

n(t− j)∆t.

The above equation is entirely deterministic except for the reservoirs n ∈ N r. In order to deal with this
randomness and reservoir bounds we will therefore add the following constraints

P[V n
min(t) ≤ V n(t) ≤ V n

max(t) ∀t ∈ τ, n ∈ N r] ≥ p (16)

V n
min(t) ≤ V n(t) ≤ V n

max(t) ∀t ∈ τ, n ∈ N \ N r, (17)

where P is a probability measure and p a security level. Constraint (16) is a joint chance constraint.
This means that we wish to satisfy all linear inequalities of the stochastic system simultaneously with
high enough probability. This can be compared to a model with individual chance constraints, which is
a model wherein we wish to satisfy each inequality with high enough probability, but taken separately.
We will see in this paper that the latter model offers insufficient robustness.

2.2 Objective function

Often, in reality, each reservoir only has a single turbine. The power output of turbining x, in cubic
meters per second m3/s, is given by a function ρ(x). This function is strictly increasing and concave,
i.e., ρ′(x) ≥ 0 and ρ′′(x) ≤ 0. In our model we have split this range into several subsections (hence several
turbines), each with efficiency ρi = ρ′(s∗i )/3600 (MWh/m3) for some s∗i in each section. We can thus
remark that for any two turbines i1 and i2 belonging to the same reservoir we have ρi1 ≥ ρi2 whenever
i1 ≤ i2. This approximation comes down to approximating ρ(x) by a piece-wise linear function.

We assume given a time dependent price signal λ(t) (in e/MWh). The following objective function has
to be minimized, when considering the model (12),(13):

∑

n∈N

Kn
∑

i=1

(Wn
i (zn

0,i − zn
F,i) −

∑

t∈τ

λ(t)∆t(

NT
∑

i=1

ρi(t)x
i(t) −

NP
∑

i=1

1

θi(t)
yi(t)), (18)

where the first part corresponds to the cost of using water expressed by the water-values, and θi(t) is
the efficiency of pumping.

2.3 Matrix formulation

In this section we show that (16) can be written as bilateral joint chance constraint. This means that the
model we are interested in is a bilateral joint chance constrained program with linear objective function
and some polyhedral constraints.

We define the following general matrix mappings D
n and C

n as follows. For any matrix Ψ and any
sequence of matrices ψ := (ψ0, ..., ψn−1) the matrix Dn(Ψ) is the block diagonal matrix containing n
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copies of Ψ , whereas

C
n(ψ) =











ψ0 0 0 · · · 0
ψ0 + ψ1 ψ0 0 · · · 0

...
. . .

...
∑|τ |−1

j=0 ψj · · · · · · ψ0











.

We furthermore define I
k as the k dimensional identity matrix and we extend the definition of C

n to a
sequence ψ shorter than n by appending with zero matrices.

Let T be the |N | ×NT matrix with

Tni =

{

1 if i ∈ σ−1
T [n] ∀n ∈ N

0 otherwise

and let P be defined as

Pni =

{

1 if i ∈ σ−1
P [n] ∀n ∈ N

0 otherwise .

Let x be the vector containing all xi(t) ranged over i first.

The following cumulated flows leave each node for each time step, counted from the beginning

D
|τ |(T )C|τ |(INT )x

Let Rs(d) be the right shift matrix over size d, i.e., Rs(d)i,j = 1Ii−d=j . Now define the rearrangement
matrix (nm×nm) R

n,m as R
n,m
i,j = 1Ij=(mod(i−1,n)m+1+div(i−1,n). We remark that R

m,n is the inverse of
Rn,m. Let Rs be the diagonal block matrix containing |N | blocks, where the nth block is Rs(Dn). Now

D
|τ |(A)TD

|τ |(T )RNT ,|τ |RsR
|τ |,NT C

|τ |(INT )x

are the flows arriving in each reservoir for each time step.

For pumping these are respectively D
|τ |(A)TD

|τ |(P )C|τ |(INP )y leaving and D
|τ |(P )C|τ |(INP )y arriving.

We define ΠT
n = (0, ..., 0, I, 0, ..., 0)R|τ |,|N |, where the identity matrix I is in the nth position as the

reservoir contraction matrix (ΠP
n is defined similarly). Moreover, we define the matrix Cz as (|N | |τ | ×

|τ |
∑

n∈N Kn) by setting Cz
|N |(i−1)+j,k

= 1I
k−(i−1)

∑

n∈N
Kn−

∑ j−1
n=1 Kn∈{1,...,Kj}

.

Equation (15) can be written as

Vn = V0 +∆tΠT
n (D|τ |(A)TD

|τ |(T )RNT ,|τ |RsR
|τ |,NT C

|τ |(INT )x− D
|τ |(T )C|τ |(INT )x)

+ ∆tΠP
n (D|τ |(P )C|τ |(INP )y − D

|τ |(A)TD
|τ |(P )C|τ |(INP )y)

+ ∆tC|τ |(1)s+∆tC|τ |(ψn)ζn, (19)

where s is the vector formed from the deterministic trend sn
t of equation (14).

Equations (12),(13) can be written easily in linear form by extracting the last line from equation (19)
without the term in ζn. In the case of time dependent water values and model (2), several lines have to
be extracted, but equations are easily formed.

3 Models for dealing with uncertainty

In this section we will provide our main model, which is a joint chance constrained programming problem
(JCCP). We will also provide several alternative models. In a later section these models will be compared
in a numerical experiment. From now on, we will assume that we are using water values that are only
dependent on the volume.
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3.1 A Joint Chance Constraint Model (JCCP)

When combining equations (12), (19) and relations (13), (17) we know that we can find some extended
decision vector (also noted x ∈ R

n) containing (x, y, z) and some matrix A, vector b such that the system
Ax ≤ b models all these deterministic constraints (including bounds on x).

Finally by combining equation (19) with (16), we can see that the above problem can be cast into the
following form, where η is a Gaussian random vector with variance-covariance matrix Σ and zero mean
(we have explicitly extracted the non-zero average in eq.(19)):

minx≥0 c
Tx

s.t. Ax ≤ b

p ≤ P[ar +Arx ≤ η ≤ br +Arx]. (20)

In fact the feasible set of (20) is convex due to the Gaussian character of η and a theorem by Prékopà
([11]). This makes the previous optimization problem a convex one. Let ϕ(x) denote the chance constraint
of problem (20).

In order to solve problem (20) we use the cutting planes algorithm of which convergence in a finite
number of steps is a well-known result. We repeat the algorithm for completeness.

1. Let x0 be the solution of (22), xs a Slater point for (20). Set A0 = A, b0 = b and k = 0 and pick
some tolerance tol, e.g., tol = 10−2.

2. Find λ∗ such that x∗k = (1 − λ∗)xk + λ∗xs and |ϕ(x∗k) − p| < ε.
3. Add constraint −∇ϕ(x∗k)Tx ≤ −∇ϕ(x∗k)Tx∗k to the matrix.
4. Solve

minx≥0 c
Tx

s.t. Akx ≤ bk

to find xk+1.

5. If
cT(x∗

k−xk+1)
cTxk+1

< tol then stop, else move k = k + 1 and go in step 2.

For the previous algorithm to function we require a Slater point, i.e., some xs such that Axs ≤ b, and
ϕ(xs) > p. It can be obtained by solving the ”max-p” problem (see section 3.2). Moreover, we should be
able to efficiently evaluate ϕ and ∇ϕ. As shown in corollary 1 below and theorem 1 of [14], evaluating the
gradient can be analytically reduced to computing function values in lesser dimension. Finally computing
function values such as ϕ(x) can be done by using the code of Genz ([5]). Evaluating ϕ and ∇ϕ requires
2n+ 1 calls to Genz’ code.

3.2 Max-P Problem

We define the ”max-p” problem as the following optimization problem:

maxx≥0 ϕ(x) := P[ar +Arx ≤ η ≤ br +Arx]

Ax ≤ b. (21)

Clearly any solution xs of the previous problem with objective function value strictly bigger than p is a
Slater point for problem (20). This ”max-p” problem is not only an auxiliary problem for obtaining Slater
points, but can also be interpreted as the problem of a decision-maker looking for maximum robustness,
regardless of the costs. As a matter of fact if the optimal solution of (21) is strictly below one, then
almost surely satisfying the ”random” physical constraints (16) is not possible. The ”max-p” problem
therefore also provides us with information on the maximum robustness level p that is ”reasonable”.
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3.3 Expectation model

In the deterministic variant of (20) we assume that constraint (16) is satisfied in expectation, i.e.,
η = E (η) = 0 in that variant. This gives:

minx≥0 c
Tx

s.t. Ax ≤ b

−Arx ≤ br

Arx ≤ −ar. (22)

This model can be identified with the model considered in a classical deterministic unit commitment
setting. The chance constrained model can be seen as an extension of this model since it takes into
account the available stochastic information on the distribution of randomness, whereas this simple
model only uses a single parameter. The following Lemma shows that any feasible solution of (20) is
feasible for (22). Physically this can be explained by the fact that a ”robust” control has to work well
in the average situation.

Lemma 1 Assume that p > 0.5 and that η is a symmetric law. The feasible set of (20) is contained in
the feasible set of (22). As a consequence the optimal value of (22) is lower than that of (20).

Proof Assume that x is not feasible for (22), for instance not a + Arx ≤ 0, i.e., there is at least one
strictly positive component. By rearranging we may assume that this is the first one. Now

P[ar +Arx ≤ η ≤ br +Arx] ≤ P[ar +Arx ≤ η] ≤ P[eT1 (ar +Arx) ≤ eT1 η] ≤ P[0 < ξ] < 0.5,

where ξ is some centered one dimensional Gaussian random variable, and e1 is a standard unit-vector.
This shows that x can’t be feasible for (20).

One should mention here that this expectation model is a simple linear program. It is therefore much
easier to solve than problem (20). Despite this fact and the fact that it yields solutions with low optimal
values, it will be shown later in this paper that the solutions are useless since they violate constraints
almost surely.

3.4 Individual Chance Constraint Model (ICCP)

We consider a simplification of the joint chance constrained model (20) by transforming each stochastic
inequality into individual chance constraints of type P[〈a1, x〉 ≤ b] ≥ p and P[b ≤ 〈a2, x〉] ≥ p for well
chosen vectors a1, a2 and some random variable b. An exact formulation is:

minx≥0 c
Tx

s.t. Ax ≤ b

P[eTi (ar +Arx) ≤ ηi] ≥ p ∀i

P[ηi ≤ eTi (br +Arx)] ≥ p ∀i, (23)

where ei is the i-th standard unit vector.

As a matter of fact, model (23) can be reduced to a simple linear program since the inverse of Fηi(z) =
P[ηi ≤ z] can be evaluated easily. It also offers improved robustness with respect to the expectation
model (22) that offered none. However it can’t guarantee a probability level of p for the whole stochastic
inequality system and therefore offers far less robustness as the joint model (20) ([14]). This will again
become apparent in the numerical experience.
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3.5 A Robust Model

We would like to identify an uncertainty set Ep for our random inflow process η in such a way that the
probability of η falling in this set is approximately p. We will then enforce the constraints to hold for
all η in this set. In fact, we will use a specific ellipsoidal form for the uncertainty set and show that the
above optimization problem then boils down to a linear problem, once two conic quadratic problems
have been solved.

In order to determine Ep, let LLT = Σ be the Cholesky decomposition of Σ. Let y = L−1η and assume

that we dispose of a statistical estimate of E

(

y4

i

)

(in the Gaussian case these are known exactly).

Whenever the law of η is unknown, we can use the variance covariance matrixΣ by statistically estimating
it. By construction, y is uncorrelated, we will make the (wrong) approximation that this is the same as
independence. Now by the Lindeberg-Feller Central Limit Theorem ([12]) we obtain that

yTy ≈ N (n, σC),

with σC =

√

∑n

i=1 E

(

y4

i

)

−n. We now define Ep =
{

x : xTΣ−1x ≤ n+ Φ−1(p)σC

}

. It follows in the case

that η follows a multivariate Gaussian law that P[x ∈ Ep] = p. This will be true approximately in the
general case.

We therefore consider the following robust version of problem (20):

minx≥0 c
Tx

s.t. Ax ≤ b

ar +Arx ≤ inf Ep

br +Arx ≥ sup Ep, (24)

where inf Ep is defined to be the largest vector xi in R
n having xi ≤ y ∀y ∈ Ep (sup Ep is defined

similarly). Both inf Ep and sup Ep are solutions of a conic quadratic optimization problem. Indeed this
model is equivalent with

minx≥0 c
Tx

s.t. Ax ≤ b

ar +Arx ≤ ξ ≤ br +Arx ∀ξ ∈ Ep.

Since this model (24) basically looks at the smallest rectangle containing Ep and requires satisfaction of
constraints for all elements in the rectangle, one could also look at alternatively ways to obtain such a
rectangle. Basically, we are looking for some η and η such that P[η ≤ η ≤ η] ≈ p. These would then
give better bounds than inf Ep and sup Ep as above, since in general P[inf Ep ≤ η ≤ sup Ep] > p. In
the Gaussian case considered here we can exactly evaluate the probabilistic contents of such rectangles
and hence fine-tune the rectangle. Clearly any feasible solution of problem (20) will also provide such
vectors. This last way of obtaining those vectors offers no computational advantage to (24) other than
prematurely ending the algorithm that solves (20). An alternative would be to take some q < p, such
that P[inf Eq ≤ η ≤ sup Eq] ≈ p. This is computationally not intensive, but requires evaluations of
probabilistic contents. In order to investigate the impact of the choice of this rectangle we have made
some runs with model (24) wherein the rectangle was made to fit perfectly. In practice, we have obtained
η and η by taking some ad-hoc convex combinations between the Slater point and the solution of (22).
These results will be referred to as Robust-Calibrated (Robust-Calib) or (24)-Calib.

4 Numerical Example

In this section we consider a numerical example from the industry. The instance size is moderate but
realistic. The nominal inflows are considered constant through time. Finally, the water values are not
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assumed to depend on the volume, and thereby correspond to the V0 level. We will consider 24 time
steps of 2 hours each. Figures 1 and 2 show further data of our example. This implies the following
dimensions for our problem: the Gaussian vector dimension is 48, the decision vector has 700 elements
and the polyhedral constraints are defined by about 1000 linear inequalities.
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40

42

44

46

48

50

Fig. 1 The price signal

We assume that the innovations of the inflows have a standard deviation equal to 20% of the nominal
values, whenever they are considered random (0.3 m3/s for reservoir 2). In a first stage we consider that
inflows follow an AR(1) process with coefficient 0.9. We assume that inflows are random on the first two
reservoirs. The required probability level is taken to be 0.8. A second instance is one wherein we assume
that inflows on reservoir 2 follow an AR(3) process with coefficients (0.9, 0.7,−0.7).

Solving the problems introduced in Section 3, we obtain the results as given in Table 1 and figures 3
and 4. We have set a tolerance of 10−2 for the cutting planes algorithm for joint chance constrained
programming. It should however be stated that the true optimal solution of problem (20) for instance
2 gives a cost, only 0.6% away from the deterministic cost. Indeed the price of chance-constrained
robustness is cheap here.

Table 1 shows optimal costs and number of violations. In order to compute the latter information, we
have made an a posteriori check of empirical probabilities by generating 100 scenarios and counting
the number of violations. The volume trajectories resulting from these scenarios are shown in figure 3.
Clearly we observe the advantage of using joint chance constrained programming. The additional cost
with respect to the deterministic solution is only small, but robustness can be fine tuned. A full robust
solution turns out quite costly. Finally individual chance constrained programming can not be used to
mimic joint chance constraints as we have no control over the number of violations over a period of time.

Table 1 Comparison of costs and number of violations

Det JCCP ICCP Robust (Ep) Robust (Calib) MaxP
Inst. Item / Problem (22) (20) (23) (24)-1 (24)-Calib (21)

1 nbViolation 100 20 29 0 1 0
1 Cost (e) −1.0478e

5 −1.0395e
5 −1.0443e

5 −1.0355e
5 −1.0099e

5 −9.9176e
4

2 nbViolation 100 20 35 4 21 2
2 Cost (e) −1.0478e

5 −1.0340e
5 −1.0422e

5 −1.0282e
5 −1.0251e

5 −9.9176e
4

When comparing the turbined volumes in fig.4, one can observe that they are quite similar for most
solutions (except for max-p which does not see the cost vector and is hence only incited to turbine if
this allows us to improve robustness) and most reservoirs, except for ”Saut Mortier”. The solution (20)
turbines a bit less in the beginning to avoid violations in time steps (8-10), a bit more during time steps
12-15 to avoid violations there and stops earlier to avoid violations for the last time steps. Solution (23)
offers an intermediate solution. The solution (24) heavily increases turbining during steps 10-15 and
drastically reduces during steps 15-20 for additional robustness. Indeed, even though the uncertainty Ep
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Fig. 2 The hydro Valley

is very well calibrated, the solution is over-robust. Unfortunately for larger values of p (in fact p > 0.85)
this will lead to an empty feasible set of problem (24), whereas solutions of (20) can be found. It also
shows the difficulty of getting the robust rectangle well calibrated for problem (24)-Calib. Indeed, even
though the rectangle is calibrated to give exactly the same probabilistic contents in both instances,
one gives over-robust results (3.6% away from deterministic solution), whereas the other gives more
reasonable results as the number of violations is concerned, but still at a large cost (2.2 % away from
deterministic solution).
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Fig. 3 Trajectories of filling levels in reservoir ”Saut Mortier” and instance 2 for 100 simulated inflow scenarios. From top
left to bottom right, solutions of problems (22), (20), (23), (24), (24)-Calib and (21)
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Fig. 4 Turbined volumes (m3) for instance 2. From top left to bottom right, solutions of problems (22), (20), (23), (24),
(24)-Calib. and (21)

5 Algorithmic perspectives / Second order methods

If one is interested in applying second order solution methods to increase the efficiency of the solution
process, one has to work out second derivatives of the probability function ϕ on the basis of the gradients
obtained in theorem 1 of [14]. This is done in the following lemma.

Lemma 2 Let ξ be an n-dimensional Gaussian random vector with mean µ and variance-covariance
matrix Σ. We define the mapping Fξ(a, b) = P[a ≤ ξ ≤ b] for any rectangle, i.e., a ≤ b. Let Di

n denote
the n-th order identity matrix from which the ith row has been deleted. For each y ∈ R

n, 1 ≤ i ≤ n and
z ∈ R we define yci,n(z,Σi) = Di

n(y +Σ−1
i,i (z − yi)Σi) ∈ R

n−1, where Σi is the ith column of Σ. We will

occasionally abbreviate this with yci
1(z). We also define

yc
i,j
2 (z,w) = (yci,n(z,Σi))cj,n−1(w,Σ

cn(i)
j

),

where we have defined Σcn(i) = Di
n(Σ − Σ−1

i,i ΣiΣ
T

i )(Di
n)T. We define ξci

1(z) as the Gaussian ran-

dom variable with mean µci
1(z) and covariance matrix Σcn(i). In a similar way, we define ξc

i,j
2 (z,w)

as the Gaussian random variable with mean µc
i,j
2 (z,w) and covariance matrix Σc

i,j
2 := Dj

n−1(Σ
cn(i) −

(Σ
cn(i)
j,j )−1Σ

cn(i)
j (Σ

cn(i)
j )T)(Dj

n−1)
T, where Σ

cn(i)
j denotes the j-th column of Σcn(i). The following holds,

for j = ĵ if ĵ < i and j = ĵ − 1 if ĵ > i:

∂2

∂aĵ∂ai

Fξ(a, b) = f
µ

ci
1(ai)

j
,Σ

cn(i)
j,j

(aj)fµi,Σi,i
(ai)F

ξ
c
i,j
2 (ai,aj)

(Dj
n−1D

i
na,D

j
n−1D

i
nb) ∀ĵ 6= i

∂2

∂bĵ∂ai

Fξ(a, b) =

{

−f
µ

ci
1(ai)

j
,Σ

cn(i)
j,j

(bj)fµi,Σi,i
(ai)F

ξ
c
i,j
2 (ai,bj)

(Dj
n−1D

i
na,D

j
n−1D

i
nb) ∀ĵ 6= i

0 ĵ = i

∂2

∂bĵ∂bi
Fξ(a, b) = f

µ
ci
1(bi)

j
,Σ

cn(i)
j,j

(bj)fµi,Σi,i
(bi)F

ξ
c
i,j
2 (bi,bj)

(Dj
n−1D

i
na,D

j
n−1D

i
nb) ∀ĵ 6= i,
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where fµ,σ(x) is the Gaussian density with mean µ and variance σ. Moreover, whenever j = i and z is
a or b we have:

∂

∂zi

(bi − ai)
∂2

∂z2
i

Fξ(a, b) = −
zi − µi

Σi,i

fµi,Σi,i
(zi)F

ξ
ci
1(zi)

(Di
na,D

i
nb)

− fµi,Σi,i
(zi)(D

i
nΣ

−1
i,i Σi)

T(∇ãF
ξ̃

ci
1(zi)

(ã, b̃) + ∇b̃Fξ̃
ci
1(zi)

(ã, b̃)),

where ã = Di
na− µci

1(zi), ξ̃ci
1(zi) = ξci

1(zi) − µci
1(zi) and b̃ is defined similarly.

Proof The formula for the cross derivatives follow from a straight-forward second application of theorem
1 in [14]. The diagonal terms are more subtle to derive and require the following reformulation:

F
ξ

ci
1(zi)

(Di
na,D

i
nb) = P

(

Di
na ≤ ξci

1(zi) ≤ Di
nb

)

= P

(

Di
na− µci

1(zi) ≤ ξci
1(zi) − µci

1(zi) ≤ Di
nb− µci

1(zi)
)

= F
ξ̃

ci
1(zi)

(ã, b̃).

In particular one obtains for ã(zi) = ã

ã = Di
na− µci

1(zi) = Di
na−Di

n(µ+Σ−1
i,i (zi − µi)Σi)

= Di
n(a− µ+Σ−1

i,i µiΣi) −Di
nΣ

−1
i,i ziΣi,

which together with the following identity

∂

∂zi

F
ξ̃

ci
1(zi)

(ã(zi), b̃(zi)) = ∇ãF
ξ̃

ci
1(zi)

(ã, b̃)Dzi
ã(zi) + ∇b̃Fξ̃

ci
1(zi)

(ã, b̃))Dzi
b̃(zi),

an application of the chain-rule and the already established formula for 1st derivatives gives the propo-
sition.

The following corollary deals with gradients and Hessians of our probability function ϕ : x 7→ P[a+Ax ≤
ξ ≤ Bx+b]. These follow easily from Lemma 2 and Theorem 1 of [14] upon noting that ϕ(x) = Fξ(Ax,Bx)
with Fξ as introduced in Lemma 2.

Corollary 1 Let ξ be a Gaussian Random variable of dimension n. Let x, A,B,a,b be vectors and
matrices of appropriate dimension. Now consider the mapping ϕ : x 7→ P[a + Ax ≤ ξ ≤ Bx + b]. We
have:

∇ϕ = ∇aFξ(a, b)
TA+ ∇bFξ(a, b)

TB

∇2ϕ = AT∇2
aaFξ(a, b)A+AT∇2

abFξ(a, b)B +BT∇2
baFξ(a, b)A+BT∇2

bbFξ(a, b)B.

The following result might be useful for the detailed water value model 2.1.4.

Lemma 3 The following problems are equivalent: minx∈Rn {f(x) : g(x) ≤ [h(x)]+} and
minx∈Rn,λ≥0 {f(x) : (g(x) − h(x) + λ)g(x) ≤ 0}. If moreover, both g and h are linear, the complemen-
tarity constraint is quadratic. In the particular case, when g(x, z) = z and h(x) =

∑

aixi, x ∈ R
n, z ∈ R,

the matrix defining the quadratic form of the inequality is given by

Q =





0 −0.5a 0
−0.5aT 1 0.5

0 0.5 0





and has n zero eigenvalues and 2 non-zero ones, 0.5± 0.5

√

‖a‖2
+ 2. The resulting quadratic constraint

is non-convex.
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Proof For each feasible x for the first problem, one can find some λ ≥ 0 such that (x, λ) is feasible for
the second one. This can be seen by case distinction on the sign of h(x), g(x). By case distinction on the
sign of g(x) one can see that each feasible (x, λ) for problem 2, yields a feasible x for problem 1. It is
easily seen that the quadratic constraint is yTQy ≤ 0, with y := (x, z, λ). Clearly any vector (b, 0, 0) with
bTa = 0 is an eigenvector with zero eigenvalue. Moreover by solving the system zµ2−zµ−( 1

4a
Ta+ 1

4 ) = 0
one obtains the other two eigenvalues. Finally since Tr(Q) = 1, the last eigenvalue has to be zero too.
The non-convexity follows since one eigenvalue of Q is negative.

6 Conclusions

In this paper, we have set up a joint chance constrained programming approach for dealing with uncer-
tainty on inflows in hydro-valley optimization. We have derived a detailed model for a real hydro-valley,
but one wherein combinatorial constraints are neglected. In order to have a more realistic description
of inflows, we have considered a causal time series setting with Gaussian innovations. The latter choice
allows us to preserve convexity and have a more realistic model on inflows. In order to solve this JCCP
problem we have used a cutting planes method that requires a Slater point and gradients. The probability
functions and gradients can be efficiently computed using Genz’ code.

In order to highlight the interest of joint chance constraint programming, we have also investigated
alternative models. Indeed, we have considered a model based on individual constraints and a robust
model. The obtained results have been compared on a realistic hydro-valley. Hence, despite the fact that
the alternative models often require less hypothesis on the law of the inflows, they provide conservative
and costly solutions. The simpler models, such as the individual chance constraint one, are shown to
yield insufficient robustness. The robust model induces an important extra cost, despite the well cal-
ibrated ”uncertainty set” and moreover often leads to empty feasible sets. Joint Chance Constrained
programming appears as a technique offering a good trade-off between cost and robustness and can be
tractable for complex realistic models. In addition, we have shown that in principle we can handle a real
size valley within reasonable computation time.

Future perspectives consist in working on model realism and on the algorithm for solving the chance con-
straint problem. Indeed, from a modeling perspective, we could integrate the combinatorial constraints
on the decision variables, potentially without many difficulties. From an algorithmic perspective, instead
of using a cutting planes idea, one could use a bundle method to hopefully improve computation times
and stability. A second point that needs investigations is an improved use of Genz’ code. We could
combine the use of Genz’ code with Prekopa’s linear programming estimation method of probability
measures in order to either increase the size of the model or improve the speed.
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