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Abstract We consider the problem of numerical approximation for forward-backward stochas-
tic differential equations with drivers of quadratic growth (qgFBSDE). To illustrate the signif-
icance of qgFBSDE, we discuss a problem of cross hedging of an insurance related financial
derivative using correlated assets. For the convergence ofnumerical approximation schemes for
such systems of stochastic equations, path regularity of the solution processes is instrumental.
We present a method based on the truncation of the driver, andexplicitly exhibit error estimates
as functions of the truncation height. We discuss a reduction method to FBSDE with globally
Lipschitz continuous drivers, by using the Cole-Hopf exponential transformation. We finally
illustrate our numerical approximation methods by giving simulations for prices and optimal
hedges of simple insurance derivatives.
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1 Introduction

Owing to their central significance in optimization problems for instance in stochastic finance
and insurance, backward stochastic differential equations (BSDE), one of the most efficient
tools of stochastic control theory, have been receiving much attention in the last 15 years. A
particularly important class, BSDE with drivers of quadratic growth, for example, arise in the
context of utility optimization problems on incomplete markets with exponential utility func-
tions, or alternatively in questions related to risk minimization for the entropic risk measure.
BSDE provide the genuinely stochastic approach of control problems which find their analyti-
cal expression in the Hamilton-Jacobi-Bellman formalism. BSDE with drivers of this type keep
being a source of intensive research.

As Monte-Carlo methods to simulate random processes, numerical schemes for BSDE pro-
vide a robust method for simulating and approximating solutions of control problems. Much
has been done in recent years to create schemes for BSDE with Lipschitz continuous drivers
(see Bouchard and Touzi (2004) or Elie (2006) and references therein). The numerical approx-
imation of BSDE with drivers of quadratic growth (qgBSDE) or systems of forward-backward
stochastic equations with drivers of this kind (qgFBSDE) turned out to be more complicated.
Only recently, in dos Reis (2009), one of the main obstacles was overcome. Following Bouchard
and Touzi (2004) in the setting of Lipschitz drivers, the strategy to prove convergence of a nu-
merical approximation combines two ingredients: regularity of the trajectories of the control
component of a solution pair of the BSDE in theL2-sense, a tool first investigated in the frame-
work of globally Lipschitz BSDE by Zhang (2001), and a convenient a priori estimate for the
solution. See Bouchard and Touzi (2004), Gobet et al. (2005),Delarue and Menozzi (2006) or
Bender and Denk (2007) for numerical schemes of BSDE with globally Lipschitz continuous
drivers, and an implementation of these ideas. The main difficulty treated in dos Reis (2009)
consisted of establishing path regularity for the control component of the solution pair of the
qgBSDE. For this purpose, the control component, known to be represented by the Malliavin
trace of the other component, had to be thoroughly investigated in a subtle and complex study
of Malliavin derivatives of solutions of BSDE. This study extends a thorough investigation of
smoothness of systems of FBSDE by methods based on Malliavin’s calculus and BMO martin-
gales independently conducted in Ankirchner et al. (2007b)and Briand and Confortola (2008).
The knowledge of path regularity obtained this way is implemented in a second step of the
approach in dos Reis (2009). The quadratic growth part of the driver is truncated to create a se-
quence of approximating BSDE with Lipschitz continuous drivers. Path regularity is exploited
to explicitly capture the convergence rate for the solutions of the truncated BSDE as a function
of the truncation height. The error estimate for the truncation, which is of high polynomial or-
der, combines with the ones for the numerical approximationin any existent numerical scheme
for BSDE with Lipschitz continuous drivers, to control the convergence of a numerical scheme
for qgBSDE. It allows in particular to establish the convergence order for the approximation of
the control component in the solution process.

An elegant way to avoid the difficulties related to drivers ofquadratic growth, and to fall
back into the setting of globally Lipschitz ones, consists of using a coordinate transform well
known in related PDE theory under the name “exponential Cole-Hopf transformation”. The
transformation eliminates the quadratic growth of the driver in the control component at the
cost of producing a transformed driver of a new BSDE which in general lacks global Lipschitz



Results on numerics for FBSDE with drivers of quadratic growth 3

continuity in the other component. This difficulty can be avoided by some structure hypotheses
on the driver. Once this is done, the transformed BSDE enjoys global Lipschitz continuity prop-
erties. Therefore the problem of numerical approximation can be tackled in the framework of
transformed coordinates by schemes well known in the Lipschitz setting. As stated before, this
again requires path regularity results in theL2-sense for the control component of the solution
pair of the transformed BSDE. For globally Lipschitz continuous drivers Zhang (2001) provides
path regularity under simple and weak additional assumptions such as12-Hölder continuity of
the driver in the time variable. The smoothness of the Cole-Hopf transformation allows passing
back to the original coordinates without losing path regularity. In summary, if one accepts the
additional structural assumptions on the driver, the exponential transformation approach pro-
vides numerical approximation schemes for qgBSDE under weaker smoothness conditions for
the driver.

In this paper we aim to give a survey of these two approaches toobtain numerical results
for qgBSDE. Doing this, we always keep an eye on one of the most important applications of
qgBSDE, which consists of providing a genuinely probabilistic approach to utility optimization
problems for exponential utility, or equivalently risk minimization problems with respect to the
entropic risk measure, that lead to explicit descriptions of prices and hedges. We motivate qgB-
SDE by reviewing a simple exponential utility optimizationproblem resulting from a method to
determine the utility indifference price of an insurance related asset in a typical incomplete mar-
ket situation, following Ankirchner et al. (2007b) and Frei(2009). The setting of the problem
allows in particular the calculation of the driver of quadratic growth of the associated BSDE.
After discussing the problem of numerical approximations,in this case by applying the method
related to the exponential transform, we are finally able to illustrate our findings by giving some
numerical simulations obtained with the resulting scheme.

The paper is organized as follows. In Section 2 we fix the notation used for treating problems
about qgFBSDE and recall some basic results. Section 3 is devoted to presenting utility opti-
mization problems used for pricing and hedging derivativeson non-tradable underlyings using
correlated assets in a utility indifference approach. In section 4 we review smoothness results for
the solutions processes of qgFBSDE, and apply them to showL2-regularity of the control com-
ponent of the solution process of a qgFBSDE. In Section 5 we discuss the truncation method
for the quadratic terms of the driver to derive a numerical approximation scheme for qgFBSDE.
Section 6 is reserved for a discussion of the applicability of the exponential transform in the
qgBSDE setting. In Section 7 we return to the motivating pricing and hedging problem and use
it as a platform for illustrating our results by numerical simulations.

2 Preliminaries

Fix T ∈ R+ = [0,∞). We work on the canonical Wiener space(Ω ,F ,P) on which ad-
dimensional Wiener processW = (W1, · · · ,Wd) restricted to the time interval[0,T] is defined.
We denote byF = (Ft)t∈[0,T] its natural filtration enlarged in the usual way by theP-zero sets.

Let p≥ 2,m,d ∈ N, Q be a probability measure on(Ω ,F ). We use the symbolEQ for the
expectation with respect toQ, and omit the superscript for the canonical measureP. To denote
the stochastic integral process of an adapted processZ with respect to the Wiener process on
[0,T], we writeZ∗W =

∫ ·
0ZsdWs.
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For vectorsx = (x1, · · · ,xm) in Euclidean spaceRm we denote|x| = (∑m
i=1(x

i)2)
1
2 . In our

analysis the following normed vector spaces will play a role. We denote by

• Lp(Rm;Q) the space ofFT-measurable random variablesX : Ω 7→ Rm, normed by‖X‖Lp=

EQ[ |X|p]
1
p ; L∞ the space of bounded random variables;

• S p(Rm) the space of all measurable processes(Yt)t∈[0,T] with values inRm normed by

‖Y‖S p = E[
(

supt∈[0,T] |Yt |
)p

]
1
p ; S ∞(Rm) the space of bounded measurable processes;

• H p(Rm,Q) the space of all progressively measurable processes(Zt)t∈[0,T] with values inRm

normed by‖Z‖H p = EQ[
(

∫ T
0 |Zs|

2ds
)p/2

]
1
p ;

• BMO(F ,Q) or BMO2(F ,Q) the space of square integrableF -martingalesΦ with Φ0 = 0
and we set

‖Φ‖2
BMO(F ,Q)= sup

τ

∥

∥

∥
EQ

[

〈Φ〉T −〈Φ〉τ |Fτ
]

∥

∥

∥

∞
< ∞,

where the supremum is taken over all stopping timesτ ∈ [0,T]. More details on this space
can be found in Appendix 1. In caseQ resp.F is clear from the context, we may omit the
argumentsQ or F and simply writeBMO(Q) resp.BMO(F ) etc;

• Dk,p(Rd) andLk,d(R
d) the spaces of Malliavin differentiable random variables and processes,

see Appendix 2.

In case there is no ambiguity aboutm or Q, we may omit the reference toRm or Q and simply
write S ∞ or H p etc.

We investigate systems of forward diffusions coupled with backward stochastic differential
equations with quadratic growth in the control variable (qgFBSDE for short), i.e. givenx∈Rm,
t ∈ [0,T], and four continuous measurable functionsb, σ , g and f we analyze systems of the
form

Xx
t = x+

∫ t

0
b(s,Xx

s )ds+
∫ t

0
σ(s,Xx

s )dWs, (1)

Yx
t = g(Xx

T)+
∫ T

t
f (s,Xx

s ,Y
x
s ,Z

x
s)ds−

∫ T

t
Zx

sdWs. (2)

In case there is no ambiguity about the initial statex of the forward system, we may and do
suppress the superscriptx and just writeX,Y,Z for the solution components. For the coefficients
of this system we make the following assumptions:

(H0) There exists a positive constantK such thatb,σi : [0,T]×Rm → Rm,1≤ i ≤ d, are uni-
formly Lipschitz continuous with Lipschitz constantK, andb(·,0) andσi(·,0),1≤ i ≤ d, are
bounded byK.

There exists a constantM ∈ R+ such thatg : Rm → R is absolutely bounded byM, f :
[0,T]×Rm×R×Rd →R is measurable and continuous in(x,y,z) and for(t,x)∈ [0,T]×Rm,
y,y′ ∈ R andz,z′ ∈ Rd we have

| f (t,x,y,z)| ≤ M(1+ |y|+ |z|2),

| f (t,x,y,z)− f (t,x,y′,z′)| ≤ M
{

|y−y′|+(1+ |z|+ |z′|)|z−z′|
}

.
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The theory of SDE is well established. Since we wish to focus on the backward equation compo-
nent of our system we emphasize that the relevant results forSDE are summarized in Appendix
3.

Theorem 1 (Properties of qgFBSDE).Under (H0), the system (1), (2) has a unique solution
(X,Y,Z) ∈S 2×S ∞×H 2. The respective norms of Y and Z can be dominated from above by
constants depending only on T and M as given by assumption (H0). Furthermore

Z∗W =
∫ .

0
ZsdWs ∈ BMO(P) and hence for all p≥ 2 one has Z∈ H

p.

It is possible to go beyond the bounded terminal condition hypothesis by imposing the existence
of all its exponential moments instead. In this caseZ∗W is no longer inBMO. As we shall see
in Section 4, theBMO property ofZ ∗W plays a crucial role in all of our smoothness results
for systems of FBSDE. It combines with the inverse Hölder inequality for the exponentials
generated byBMO martingales to control moments of functionals of the solutions of FBSDE.
Smoothness of solutions is instrumental for instance in estimates for numerical approximations
of solutions.

3 Pricing and hedging with correlated assets

The pivotal task of mathematical finance is to provide solid foundations for the valuation of
contingent claims. In recent years, markets have displayedan increasing need for financial in-
struments pegged to non-tradable underlyings such as temperature and energy indices or toxic
matter emission rates. In the same manner as liquidly tradedunderlyings, securities on non-
tradable underlyings are used to measure, control and manage risks, as well as to speculate and
take advantage of market imperfections. Since non-tradability produces residual risks which are
innate and inaccessible to hedging, institutional investors look for tradable assets which are cor-
related to the non-tradable ones. In incomplete markets, one established pricing paradigm is the
utility maximization principle. Upon choosing a risk preference, investors evaluate contingent
claims by replicating according to an investment strategy that yields the most favorable utility
value. Interplays and connections between the pricing of contingent claims on non-tradable un-
derlyings and the theory of qgFBSDE were studied, among others, by Ankirchner et al. (2007a),
Morlais (2009), Imkeller et al. (2009), and recently by Frei(2009). Based on this setup, we
consider the problem of numerically evaluating contingentclaims based on non-tradable un-
derlyings. This will be done by intervention of the exponential transformation of qgBSDE, to
be introduced in Section 6. It allows to work under weaker assumptions than the numerical
schemes for qgFBSDE based on the results reviewed in Section 4, and will allow some illustra-
tive numerical simulations in Section 7.

The following toy market setup can be found in Section 4 of Frei (2009). Assumed = 2,
so thatW = (W1,W2) is our basic two-dimensional Brownian motion. We use them to define a
third Brownian motionW3 correlated toW1 with respect to a correlation coefficientρ ∈ [−1,1]
according to

W3
s :=

∫ s

0
ρdW1

u +
∫ s

0

√

1−ρ2dW2
u , 0≤ s≤ T.
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Contingent claims are assumed to be tied to a one-dimensionalnon-tradable index that is subject
to

dRt = µ(t,Rt)dt +σ(t,Rt)dW1
t , R0 = r0 > 0, (3)

whereµ,σ : [0,T]×R→ R are deterministic measurable and uniformly Lipschitz continuous
functions, uniformly of (at most) linear growth in their state variable. The securities market is
governed by a risk free bank account yielding zero interest and one correlated risky asset whose
dynamics (with respect to the zero interest bank accountnuḿeraire) are governed by

dSs

Ss
= α(s,Rs)ds+β (s,Rs)dW3

s , S0 = s0 > 0. (4)

In compliance with Ankirchner et al. (2007a), we assume thatα,β : [0,T]×R→R are bounded
and measurable functions, and furthermoreβ 2(t, r) ≥ ε > 0 holds uniformly for some fixed
ε > 0. Next, we set

θ(s, r) :=
α(s, r)
β (s, r)

, (s, r) ∈ [0,T]×R,

and note that the conditions onα andβ imply thatθ is uniformly bounded.
An admissible investment strategy is defined to be a real-valued, measurable predictable

processλ such that
∫ T

0 λ 2
u du< ∞ holdsP-almost surely and such that the family

{

e−η
∫ τ
0 λu

dSu
Su : τ stopping time with values in[0,T]

}

(5)

is uniformly integrable. The set of all admissible investment strategies is denoted byA . In the
following, let t ∈ [0,T] denote a fixed time. Then the set of all admissible investmentstrategies
living on the time interval[t,T] is defined analogously and we denote it byAt . Let vt denote the
investor’s initial endowment at timet, that is,vt is anFt-measurable bounded random variable.
The gain of the investor at times∈ [t,T], denoted byGs, is subject to trading according to
investingλ into the risky asset, and therefore given by

dGλ
s = λs

dSs

Ss
, Gt = 0.

We focus on European style contingent claims, i.e. payoff profiles resuming the formF(RT)
where we assume, in accordance with Ankirchner et al. (2007a), thatF : R→ R is measurable
and bounded. Moreover the investor’s risk assessment presumes that her utility preference is
reflected by the exponential utility function, so given a nonzero constant risk attitude parameter
η , the investor’s utility function is

U(x) =−e−ηx, x∈ R.

The evolution of the investor’s portfolio over the time interval [t,T] consists of her initial en-
dowmentvt , her gains (or losses) via her investment into the risky asset under an investment
strategyλ and holding one share of the contingent claimF(RT). Her objective is to find an
investment strategy such that her time-t utility is maximized, i.e. her maximization problem is
given by
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VF
t (vt) := sup

{

E

[

U(vt +Gλ
T +F(RT))

∣

∣Ft

]

: λ ∈ At

}

= exp{−ηvt}sup
{

E

[

U(Gλ
T +F(RT))

∣

∣Ft

]

: λ ∈ At

}

(6)

For the sake of notational convenience, we write

VF
t :=VF

t (0) = sup
{

E

[

U(Gλ
T +F(RT))

∣

∣Ft

]

: λ ∈ At

}

. (7)

Now pricingF(RT) within the utility maximization paradigm is based on the identity

V0
t (vt) =VF

t (vt − pt),

whereV0
t (vt) denotes the time-t utility with initial endowmentvt and with F = 0 (see also

Section 2 of Ankirchner et al. (2007a) and Section 3 of Frei (2009)). According to this identity,
the investor is indifferent about a portfolio with initial endowmentvt without receiving one
quantity of the contingent claimF(RT) and a portfolio with initial endowmentvt − pt , now
receiving one quantity of the contingent claim in addition.Hencept is interpreted as the time-t
indifference price of the contingent claimF(RT). By the equalityVF

t (vt) = exp{−ηvt}VF
t , it

follows that

pt =
1
η

log
V0

t

VF
t
, (8)

which means that the indifference price does not depend on the initial endowmentvt . Since
the time-t indifference price (8) is fully characterized byV0

t andVF
t , the focus now lies in the

investigation of (6). In fact, Ankirchner et al. (2007a) andFrei (2009) have already pointed out
that (7) yields a characterization by means of a qgFBSDE. In accordance with Frei (2009), let
us denote by(Gu)0≤u≤T the filtration generated byW1, completed byP-null sets. Frei (2009)’s
main ideas for rephrasing (6) in terms of a qgBSDE are summarized in the following

Lemma 1.The qgFBSDE

Ys = F(RT)+
∫ T

s
f (u,Zu)du−

∫ T

s
ZudW1

u , s∈ [0,T], (9)

f (u, r,z) =
θ 2(u, r)

2η
−zρθ(u, r)−

η
2

(

1−ρ2)z2, (10)

has a unique solution(Y,Z) ∈ S ∞ ×H 2 such that VF
t =−e−ηYt holdsP-almost surely.

Proof. Sinceθ(·, r) is uniformly bounded andG -predictable, the driver of (9) satisfies the con-
ditions of Kobylanski (2000); thus (9) admits a unique solution (Y,Z) ∈ S ∞ ×H 2. More-
over, Mania and Schweizer (2005) have shown thatZ∗W1 is both a BMO(F )- and BMO(G )-
martingale. See also Ankirchner et al. (2007a). To prove theidentityVF

t = −e−ηYt , we notice
that

e−η(Gλ
T−YT) = e−ηGλ

t e−ηYt e−η(YT−Yt)e−η(Gλ
T−Gλ

t )

= e−ηYt e−η(YT−Yt)e−η(Gλ
T−Gλ

t ),
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becauseGλ
t = 0. We then have

exp{−η (YT −Yt)}exp{−η(Gλ
T −Gλ

t )}

= exp

{

−η
(

∫ T

t
ZudW1

u +
∫ T

t
λuβ (u,Ru)dW3

u

)

+
∫ T

t
[λuα(u,Ru)− f (u,Ru,Zu)]du

}

.

DenotingE s
t (M) = E (M)s/E (M)t for t ≤ s≤ T whereE (M)s is the stochastic exponential of

a given semi-martingaleM, we introduce

Ku :=
1
2

(

η (ρZu+β (u,Ru)λu)−θu

)2
, t ≤ u≤ T.

Then a simple calculation yields

exp
{

−η
(

YT −Yt
)

}

exp
{

−η
(

Gλ
T −Gλ

t

)

}

= E
T
t

(

∫

−ηZdW1−
∫

ηλβ (·,R)dW3
)

exp

{

∫ T

t
Kudu

}

.

Sinceλβ (·,R) ∗W3 is a BMO-martingale, we can condition with respect to theσ -algebraFt

and get

E

[

e−η(Gλ
T−F(RT))

∣

∣ Ft

]

= e−ηYt e
∫ T
t Kudu ≥ e−ηYt . (11)

By (5) and a localization argument, this inequality holds foreveryλ ∈ At , and therefore we
haveVF

t ≤ −e−ηYt . To prove equality, note that the inequality (11) becomes anequality for

λ̃u =− ρ
β (u,Ru)

Zu+
θ(u,Ru)

ηβ (u,Ru)
; this in conjunction with the observation that

exp

{

−ηλ̃u
dSu

Su

}

= exp
{

−ηGλ̃
T

}

= exp
{

−η
(

Gλ̃
T −Gλ̃

t

)}

= E
T
t

(

∫

−ηZdW1−
∫

ηλ̃β (·,R)dW3
)

×exp{−η (YT −Yt)}

is the product of a bounded process and trueF -martingale yields that condition (5) is satisfied.
Henceλ̃ ∈ At and we have shownVF

t =−e−ηYt .

The proof of the previous Lemma 1 yields the following

Corollary 1. The investment strategy

λ̃s :=−
ρ

β (s,Rs)
Zs+

θ(s,Rs)

ηβ (s,Rs)
, t ≤ s≤ T, (12)

where Z is the control component of the solution to(9), belongs toAt and satisfies

E

[

U(vt +Gλ̃T +F(RT)
∣

∣Ft

]

= sup
{

E

[

U(vt +Gλ
T +F(RT)

∣

∣Ft

]

: λ ∈ At

}

=VF
t (vt).

One application is given in the following example.
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Example 1.[Put option on kerosene, compare with Example 1.2 from Ankirchner et al. (2007a)]
Facing recent considerable declines in world oil prices, companies producing kerosene wish to
partially cover their risk of such a depreciation. Europeanput options are an established financial
instrument to comply with this demand of risk covering. Since kerosene is not traded in a liquid
market, derivative contracts on this underlying must be arranged on an over-the-counter basis.
Knowing that the price of heating oil is highly correlated with the price of kerosene, the pricing
and hedging of a European put option on kerosene can be done bya dynamic investment in (the
liquid market of) heating oil. A numerical treatment of thispricing problem will be displayed
in Section 7.

4 Smoothness and path regularity results

The principal aim of this paper is to survey some recent results on the numerical approximation
of prices and hedging strategies of financial derivatives such as the liabilityF(RT) in the setting
of the previous section. As we saw, this leads us directly to qgFBSDE. In the subsequent sections
we shall discuss an approach based on a truncation of the driver’s quadratic part in the control
variable. It will be crucial to give an estimate for the errorcommitted by truncating. Our error
estimate will be based on smoothness results for the controlcomponentZx of solutions of the
BSDE part of our system. Smoothness is understood both in the sense of regular sensitivity to
initial statesx of the forward component, as well as in the sense of the stochastic calculus of
variations. Since the control component of the solution of aBSDE is related to the Malliavin
trace of the other component, we will be led to look at variational derivatives of the first order.

Our first result concerns the smoothness of the map[0,T]×Rm ∋ (t,x) 7→ Zx
t , especially

its differentiability inx. The second result refers to the variational differentiability of (Yx,Zx)
in the sense of Malliavin’s calculus. We shall work under thefollowing hypothesis, where we
denote the gradient by the common symbol∇, and by∇u if we wish to emphasize the variable
u with respect to which the derivative is taken.

(H1) Assume that (H0) holds. For any 0≤ t ≤ T the functionsb(t, ·),σi(t, ·),1 ≤ i ≤ d, are
continuously differentiable with bounded derivatives in the spatial variable. There exists a
positive constantc such that

yTσ(t,x)σT(t,x)y≥ c|y|2, x,y∈ Rm, t ∈ [0,T]. (13)

f is continuously partially differentiable in(x,y,z) and there existsM ∈ R+ such that for
(t,x,y,z) ∈ [0,T]×Rm×R×Rd

|∇x f (t,x,y,z)| ≤ M(1+ |y|+ |z|2),

|∇y f (t,x,y,z)| ≤ M,

|∇z f (t,x,y,z)| ≤ M(1+ |z|).

g : Rm → R is a continuously differentiable function satisfying|∇g| ≤ M.
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Smoothness results

The following differentiability results are extensions ofTheorems proved in Ankirchner et al.
(2007b) and Briand and Confortola (2008). For further details, comments and complete proofs
we refer to the mentioned works or to dos Reis (2009).

Theorem 2 (Classical differentiability). Suppose that (H1) holds. Then for all p≥ 2 the so-
lution processΘ x = (Xx,Yx,Zx) of the qgFBSDE (1), (2) with initial vector x∈ Rm for the
forward component belongs toS p ×S p ×H p. The applicationRm ∋ x 7→ (Xx,Yx,Zx) ∈
S p(Rm)×S p(R)×H p(Rd) is differentiable. The derivatives of x7→ Xx satisfy (21) while
the derivatives of the map x7→ (Yx,Zx) satisfy the linear BSDE

∇Yx
t = ∇g(Xx

T)∇Xx
T −

∫ T

t
∇Zx

sdWs+
∫ T

t
〈∇ f (s,Θ x

s),∇Θ x
s〉ds, t ∈ [0,T].

Theorem 3 (Malliavin differentiability). Suppose that (H1) holds. Then the solution process
(X,Y,Z) of FBSDE (1), (2) has the following properties. For x∈ Rm,

• Xx satisfies (22) and for any0≤ t ≤ T, x∈ Rm we have(Yx,Zx) ∈ L1,2×
(

L1,2
)d

. Xx fulfills
the statement of Theorem 11, and a version of(DuYx

t ,DuZx
t )0≤u,t≤T satisfies

DuY
x
t = 0, DuZx

t = 0, t < u≤ T,

DuY
x
t = ∇g(Xx

T)DuXx
T +

∫ T

t
〈∇ f (s,Θ x

s),DuΘ x
s〉ds−

∫ T

t
DuZx

sdWs, t ∈ [u,T].

Moreover,(DtYx
t )0≤t≤T defined by the above equation is a version of(Zx

t )0≤t≤T .

• The following representation holds for any0≤ u≤ t ≤ T and x∈ Rm

DuY
x
t = ∇xY

x
t (∇xX

x
u)

−1σ(u,Xx
u), a.s.,

Zt = ∇xY
x
t (∇xX

x
t )

−1σ(s,Xx
t ), a.s..

Regularity and bounds for the solution process

A careful analysis ofDY in both its variables under the smoothness assumptions on the co-
efficients of our system formulated earlier reveals the following continuity properties for the
control processZ.

Theorem 4 (Time continuity and bounds).Assume (H1). Then the control process Z of the
qgFBSDE (1)-(2) has a continuous version on[0,T]. Furthermore for all p≥ 2 it satisfies

‖Z‖S p < ∞. (14)

Theorem 5 (Regularity). Under (H1) the solution process(X,Y,Z) of the qgFBSDE (1), (2)
satisfies for all p≥ 2

i) there exists a constant Cp > 0 such that for0≤ s≤ t ≤ T we have

E[ sup
s≤u≤t

|Yu−Ys|
p ]≤Cp|t −s|

p
2 ;
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ii) there exists a constant Cp > 0 such that for any partitionπ = {t0, · · ·tN} with 0= t0 < · · ·<
tN = T of [0,T] with mesh size|π|

N−1

∑
i=0

E

[(

∫ ti+1

ti
|Zt −Zti |

2dt
)

p
2
]

≤Cp|π|
p
2 .

Now let h = T/N, πN = {ti = ih : i = 0, · · · ,N} be an equidistant partition of[0,T] with
N+1 points and constant mesh sizeh. Let Z be the control component in the solution of the
qgFBSDE (1), (2) under (H1) and define the family of random variables

Z̄πN

ti =
1
h
E

[

∫ ti+1

ti
Zsds

∣

∣Fti

]

, ti ∈ πN \{tN}. (15)

For 0≤ i ≤ N−1 the random variablēZπN

ti is the bestFti -measurable approximation ofZ in
H 2([ti, ti+1]), i.e.

E

[

∫ ti+1

ti
|Zs− Z̄πN

ti |2ds
]

= inf
Λ
E

[

∫ ti+1

ti
|Zs−Λ |2ds

]

,

whereΛ is allowed to vary in the space of all square integrableFti -measurable random vari-
ables. By constant interpolation we defineZ̄πN

t = Z̄πN

ti for t ∈ [ti, ti+1[, 0≤ i ≤ N−1. It is easy

to see that(Z̄πN

t )t∈[0,T] converges to(Zt)t∈[0,T] in H 2[0,T] ash vanishes. SinceZ is adapted

there exists a family of adapted processesZπN
indexed by our equidistant partitions such that

ZπN

t = Zti for t ∈ [ti, ti+1) and thatZπN
converges toZ in H 2 ash tends to zero. SincēZπN

is the
bestH 2-approximation ofZ, we obtain

‖Z− Z̄πN
‖H 2 ≤ ‖Z−ZπN

‖H 2 → 0, ash→ 0.

The following Corollary of Theorem 5 extends Theorem 3.4.3 inZhang (2001) (see Theorem
12) to the setting of qgFBSDE.

Corollary 2 (L2-regularity of Z). Under (H1) and for the sequence of equidistant partitions
(πN)N∈N of [0,T] with mesh size h= T

N , we have

max
0≤i≤N−1

{

sup
t∈[ti ,ti+1)

E

[

|Yt −Yti |
2
]}

+
N−1

∑
i=0

E

[

∫ ti+1

ti
|Zs− Z̄πN

ti |2ds
]

≤Ch,

where C is a positive constant independent of N.

Remark 1.The above corollary still holds if (H1) is weakened. More precisely, the corollary’s
statement remains valid if one replaces in (H1) the sentence

“g : Rm → R is a continuously differentiable function satisfying|∇g| ≤ M.”

by
“g : Rm → R is uniformly Lipschitz continuous in all its variables.”

The proof requires a regularization argument.
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5 A truncation procedure

To the best of our knowledge so far none of the usual discretization schemes for FBSDE has
been shown to converge in the case of systems of FBSDE considered in this paper, the driver
of which is of quadratic growth in the control variable. The regularity results derived in the
preceding section have the potential to play a crucial role in numerical approximation schemes
for qgFBSDE. We shall now give arguments to substantiate thisclaim. In fact, the regularity of
the control component of the solution processes of our BSDE will lead to precise estimates for
the error committed in truncating the quadratic growth partof the driver. We will next explain
how this truncation is done in our setting.

We start by introducing a sequence of real valued functions(h̃n)n∈N that truncate the identity
on the real line. Forn∈ N the maph̃n is continuously differentiable and satisfies

• h̃n → id locally uniformly, |h̃n| ≤ |id| and|h̃n| ≤ n+1; moreover

h̃n(x) =







(n+1) ,x> n+2,
x , |x| ≤ n,

−(n+1) ,x<−(n+2);

• the derivative of̃hn is absolutely bounded by 1 and converges to 1 locally uniformly.

We remark that such a sequence of functions exists. The aboverequirements are for instance
consistent with

h̃n(x) =

{(

−n2+2nx−x(x−4)
)

/4 ,x∈ [n,n+2],
(

n2+2nx+x(x+4)
)

/4 ,x∈ [−(n+2),−n].

We then definehn : Rd →Rd by z 7→ hn(z) = (h̃n(z1), · · · , h̃n(zd)), n∈N. The sequence(hn)n∈N

is chosen to be continuously differentiable because the properties stated in Theorem 4 need to
hold for the solution processes of the family of FBSDE that thetruncation sequence generates
by modifying the driver according to the following definition.

Recalling the driverf of BSDE (2), for n ∈ N we define fn(t,x,y,z) := f (t,x,y,hn(z)),
(t,x,y,z)∈ [0,T]×Rm×R×Rd. With this driver and (1) we obtain a family of truncated BSDE
by

Yn
t = g(XT)+

∫ T

t
fn
(

s,Xs,Y
n
s ,Z

n
s

)

ds−
∫ T

t
Zn

sdWs, t ∈ [0,T],n∈ N. (16)

The following Theorem proves that the truncation error leads to a polynomial deviation of
the corresponding solution processes in their natural norms, formulated for polynomial order
12.

Theorem 6.Assume that (H1) is satisfied. Fix n∈ N and let X be the solution of (1). Let(Y,Z)
and(Yn,Zn)n∈N be the solution pairs of (2) and (16) respectively. Then for all p ≥ 2 there exists
a positive constant Cp such that for all n∈ N

E

[

sup
t∈[0,T]

|Yn
t −Yt |

p
]

+E

[(

∫ T

0
|Zn

s −Zs|
2ds

)

p
2
]

≤Cp
1

n12.

The proof of Theorem 6 roughly involves estimating the probability that Zn exceeds the thresh-
old n as a function ofn∈N through Markov’s inequality. The application of Markov’s inequality
is possible thanks to (14).
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6 The exponential transformation method

In the preceding sections we exhibited the significance of path regularity for the solution of
systems of qgFBSDE, in particular the control component, fortheir numerical approximation.
In this section we shall discuss an alternative route to pathregularity of solutions in a particu-
lar situation that allows for weaker conditions than in the preceding sections. We will use the
exponential transform known in PDE theory as the Cole-Hopf transformation. This mapping
takes the exponential of the componentY of a solution pair as the new first component of a
solution pair of a modified BSDE. It makes a quadratic term in the control variable of the form
z 7→ γ|z|2 vanish in the driver of the new system. The price one has to payfor this approach is a
possibly missing global Lipschitz condition in the variabley for the modified driver. It is there-
fore not clear if the new BSDE is amenable to the usual numerical discretization techniques.
We give sufficient conditions for the transformed driver to satisfy a global Lipschitz condition.
In this simpler setting our techniques allow an easier access to smoothness results for the solu-
tions of the transformed BSDE. The Cole-Hopf transformation being one-to-one, it is clear that
regularity results carry over to the original qgFBSDE.

Under (H0), we consider the transformationP= eγY andQ= γPZ. It transforms our qgB-
SDE (2) with driverf into the new BSDE

Pt = eγg(XT)+
∫ T

t

[

γPs f
(

s,Xs,
logPs

γ
,

Qs

γPs

)

−
1
2
|Q|2s
Ps

]

ds−
∫ T

t
QsdWs, t ∈ [0,T]. (17)

Combining (17) with SDE (1), we see that for anyp ≥ 2 a unique solution(X,P,Q) ∈ S p×
S ∞ ×H p of (1) and (17) exists. The properties of this triple follow from the properties of the
solution(X,Y,Z) of the original qgFBSDE (1) and (2). For clarity, we remark that sinceY is
bounded,P is also bounded and bounded away from 0. The latter property allows us to deduce
from the BMO martingale property ofZ ∗W the BMO martingale property ofQ∗W. For the
rest of this section we denote byK a compact subset of(δ ,+∞) for some constantδ ∈ R+ in
whichP takes its values.

The form of the driver in (17) indicates that after transforming drivers of the form of the
following hypothesis, we have good chances to deal with a Lipschitz continuous one.

(H0*) Assume that (H0) holds. Forγ ∈ R let f : [0,T]×Rm×R×Rd → R be of the form

f (t,x,y,z) = l(t,x,y)+a(t,z)+
γ
2
|z|2,

where l and a are measurable,l is uniformly Lipschitz continuous inx and y, a is uni-
formly Lipschitz continuous and homogeneous inz, i.e. for c ∈ R,(s,z) ∈ [0,T]×Rd we
havea(s,cz) = ca(s,z); l anda continuous int.

Assumption (H0*) allows us to simplify the BSDE obtained fromthe exponential transforma-
tion to

Pt = eγg(XT)+
∫ T

t
F(s,Xs,Ps,Qs)ds−

∫ T

t
QsdWs, t ∈ [0,T], (18)

where the driver is defined by
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F : [0,T]×Rm×K ×Rd → R,

(s,x, p,q) 7→ γ pl
(

s,x,
logp

γ
)+ γ pa

(

s,
q

γ p

)

. (19)

Thanks to the homogeneity assumption ona our driver simplifies further. Indeed, we have for
(s,x, p,q) ∈ [0,T]×Rm×R×Rd

F(s,x, p,q) = γ pl
(

s,x,
logp

γ
)+a

(

s,q
)

. (20)

The terminal condition of the transformed BSDE still keeps the properties it had in the
original setting. Indeed, boundedness ofg is inherited by exp(γg). Furthermore, ifg is uniformly
Lipschitz, then clearly by boundedness ofg, the functioneγg is uniformly Lipschitz as well.

Let us next discuss the properties of the driver (19) in the transformed BSDE. We recall that
sincel anda are Lipschitz continuous, there is a constantC > 0 such that for all(s,x, p,q) ∈
[0,T]×Rm×K ×Rd we have

|F(s,x, p,q)| ≤
∣

∣γ pl
(

s,x,
logp

γ
)

+a
(

s,q
)∣

∣

≤C|p|
(

1+ |x|+ | logp|+ |q|
)

≤C
(

1+ |x|+ |p|+ |q|
)

.

This means thatF is of linear growth inx, p andq.
To verify Lipschitz continuity properties ofF in its variablesx, p andq, by (20) and the

Lipschitz continuity assumptions ona, it remains to verify that

(x, p) 7→ γ pl(s,x,
logp

γ
)

is Lipschitz continuous inx and p, with a Lipschitz constant independent ofs∈ [0,T]. As for
x, this is an immediate consequence of the Lipschitz continuity of l in x. For p we have to
recall thatp is restricted to a compact setK ⊂ R+ not containing 0, to be able to appeal to the
Lipschitz continuity ofl in y. This shows thatF is globally Lipschitz continuous in its variables
x, p andq.

We may summarize these observations in the following Theorem.

Theorem 7.Let f : [0,T]×Rm×R×Rd → R be a measurable function, continuous onRm×
R×Rd, and satisfying (H0*). Then F as defined by (19) is a uniformlyLipschitz continuous
function in the spatial variables.

Theorem 7 opens another route to tackle convergence of numerical schemes via path regu-
larity of the control component of a solution pair of a qgFBSDEsystem whose driver satisfies
(H0*). Look at the new BSDE after applying the Cole-Hopf transform. Since it possesses a Lip-
schitz continuous driver, path regularity for the control componentQ of the transformed BSDE
will follow from Zhang’s path regularity result stated in (12) provided the driver is12-Hölder
continuous in time. Of course, by the smoothness of the Cole-Hopf transform, the control com-
ponentZ of the original BSDE will inherit path regularity fromQ. This way we circumvent the
more stringent assumption (H1) which was made in section 4.

In what follows the triples(X,Y,Z) and(X,P,Q) will always refer to the solution of qgFB-
SDE (1), (2) and FBSDE (1), (18) respectively.
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Theorem 8.Let (H0*) hold. Assume that[0,T]×Rm×K ×Rd ∋ (s,x, p,q) 7→F(s,x, p,q)∈R,
the driver of BSDE (18), is uniformly Lipschitz in x, p and q and is1

2-Hölder continuous in s.
Suppose further that the map g: Rd →R, as indicated in (H0), is globally Lipschitz continuous
with Lipschitz constant K. Let(X,Y,Z) be the solution of qgFBSDE (1), (2), andε > 0 be given.
There exists a positive constant C such that for any partition π = {t0, · · · , tN} with 0= t0,T =
tN, t0 < · · ·< tN of the interval[0,T], with mesh size|π| we have

max
0≤i≤N−1

{

sup
t∈[ti ,ti+1)

E

[

|Yt −Yti |
2
]}

≤C|π| and
N−1

∑
i=0

E

[

∫ ti+1

ti
|Zs− Z̄π

ti |
2ds

]

≤C|π|1−ε .

Moreover, if the functions b andσ are continuously differentiable in x∈ Rm then t 7→ Zt is a.s.
continuous in[0,T].

Proof. Throughout this proofC will always denote a positive constant the value of which may
change from line to line. Let(X,P,Q) be the solution of (1) and (18), whereP takes its values
in K andQ∗W is a BMO martingale. Applying Theorem 12 yields a positive constantC such
that for any partitionπ = {t0, · · · , tN} of [0,T] with mesh size|π|

max
0≤i≤N−1

{

sup
t∈[ti ,ti+1)

E

[

|Pt −Pti |
2
]}

+
N−1

∑
i=0

E

[

∫ ti+1

ti
|Qs− Q̄π

ti |
2ds

]

≤C|π|.

SinceP takes its values in the compact setK ⊂ R+ not containing 0 there exists a constantC
such that for any 0≤ i ≤ N−1, t ∈ [ti, ti+1)

|Yt −Yti |=C| logPt − logPti | ≤C|Pt −Pti |.

Using the two above inequalities we have

max
0≤i≤N−1

{

sup
t∈[ti ,ti+1)

E

[

|Yt −Yti |
2
]}

≤C max
0≤i≤N−1

{

sup
t∈[ti ,ti+1)

E

[

|Pt −Pti |
2
]}

≤C|π|.

This proves the first inequality. For the second one, note that by definition for 0≤ i ≤ N−1, t ∈
[ti, ti+1)

|Zt − Z̄ti | ≤ |Zt −Zti | ≤
1
γ

{

|
Qt

Pt
−

Qt

Pti
|+ |

Qt

Pti
−

Qti

Pti
|
}

≤
1
γ

{

|Qt ||
1
Pt

−
1
Pti

|+
1
|Pti |

|Qt −Qti |
}

≤C
{

|Qt | |Pt −Pti |+ |Qt −Qti |
}

.

We therefore have for 0≤ i ≤ N−1

E

[

∫ ti+1

ti
|Zs− Z̄π

ti |
2ds

]

≤ E

[

∫ ti+1

ti
|Zs−Zti |

2ds
]

≤ 2C
{

E

[

sup
t∈[ti ,ti+1)

|Pt −Pti |
2
∫ ti+1

ti
|Qs|

2ds
]

+E

[

∫ ti+1

ti
|Qt −Qti |

2ds
]}

.

SinceQ∈ H p for all p≥ 2, for any two real numbersα,β ∈ (1,∞) satisfying 1/α +1/β = 1
we may continue using Ḧolder’s inequality on the right hand side of the inequality just obtained,
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and then Theorem 12 to the term containingP. This yields the following inequality valid for
any 0≤ i ≤ N−1 with a constantC not depending oni

E

[

∫ ti+1

ti
|Zs− Z̄π

ti |
2ds

]

≤C
{

E
[

sup
t∈[ti ,ti+1)

|Pt −Pti |
2α] 1

α E
[

(

∫ ti+1

ti
|Qs|

2ds
)β] 1

β
+ |π|

}

≤C
{

E
[

sup
t∈[ti ,ti+1)

|Pt −Pti |
2]

1
α + |π|

}

≤C
{

|π|
1
α + |π|

}

.

Now chooseα = 1
1−ε , to complete the claimed estimate.

To prove thatZ admits a.s. a continuous version, it is enough to remark thatthe Theorem’s
assumptions imply the conditions of Corollary 5.6 in Ma and Zhang (2002). The referred result
yields thatQ is a.s. continuous on[0,T]. SinceP is continuous and bounded away from zero we
conclude from the equationγPZ= Q thatZ is a.s. continuous as well.

7 Back to the pricing problem

We now come back to the numerical valuation of the put option on kerosene as depicted in
example 1. Notations in the following are adopted from Section 3. Assume that the put option
expires atT = 1. LetRandSdenote the dynamics for the financial value of kerosene and heating
oil respectively. In particular we assume both dynamics to be lognormally distributed according
to

dRt = µ(t,Rt)dt +σ(t,Rt)dW1
t = 0.12Rt dt +0.41Rt dW1

t ,

dSt

St
= α(t,Rt)dt +β (t,Rt)dW3

t = 0.1dt +0.35dW3
t ,

and we assume the spot price for heating oil to bes0 = 173 money units (e.g. US Dollar, Euro),
see also equations (3) and (4). Risk aversion is set at the level of η = 0.3. Figure 1 displays
sample paths of the kerosene price with a spot price ofr0 = 170 and heating oil price at different
correlation levels using the explicit solution formula forthe geometric Brownian motion. We
see that the higher the correlation, the better the approximation of the kerosene by heating oil
becomes. We have seen that the valuation of the put option viautility maximization yields the
pricing formula (8) which in conjunction with Lemma 1 becomes the difference of two solutions
of a qgBSDE with the generator (10)

pt =YF
t −Y0

t , 0≤ t ≤ T,

whereF(x) = (K−x)+ for some strikeK > 0. For the numerical simulation of the qgFBSDEYF

andY0, we apply the exponential transformation to both BSDE (see Section 6) and then employ
the algorithm by Bender and Denk (2007) withN = 100 equidistant time points, 70000 paths
and a regression basis consisting of five monomials and the payoff function of the put option.
The Picard iteration stops as soon as the difference of two subsequent time zero values is less
than 10−5. Simulations reveal that 12 to 13 iterations are needed for solving one exponentially
transformed qgFBSDE. Figures 2(a) and 2(b) depict the time zero pricep0 of the put option at
different strike and kerosene spot levels. The lower the correlation, the lower the price becomes.
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Fig. 1 Price paths of the nontradable asset kerosene and the correlated asset heating oil at different
correlation levels. The spot of kerosene was set tor0 = 170.
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(a) Put option price in terms varying strikes at a fixed
kerosene spotr0 = 170.
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(b) Put option price in terms of varying kerosene
spots at a fixed strikeK = 200.

Fig. 2 Values of the put option in terms of kerosene spot and strike for varying correlations. High corre-
lations lead to high the prices for the contingent claim.

This is clear because lower correlations between heating oil and kerosene lead to higher non-
hedgeable residual risk which diminishes the risk coveringeffect of the contingent claim and
thus also its value. Figures 3(a) and 3(b) depict sample paths of the dynamics for the pricept

and the optimal investment strategyπt for an at the money put with strikeK = 180 and kerosene
spotr0 = 170. The plots depict price and monetary investment for every fourth time point of
the discretization. The price process and the dynamics of the optimal investment strategy are
intertwined: high fluctuations of the price process result in high fluctuations of the investment
strategy and vice versa. In general we observe that replication on high correlation levels tends
to entail greater market activity because kerosene price risks can then be well hedged by mar-
ket transactions that move closely along the dynamics of heating oil. In contrast, replication
on lower correlation levels leads to a higher amount of residual risk which is inaccessible for
hedging and thus lower market activity is needed.
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(a) Dynamics of the price processpt for strike K =
180.
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(b) Dynamics of the optimal investment strategyπt

for strikeK = 180.

Fig. 3 Paths of the pricept and the optimal investment strategyπt for varying correlation levels. In
general high correlations entail greater market activity.

Appendix 1 – Some results on BMO martingales

BMO martingales play a key role for a priori estimates needed in our sensitivity analysis of
solutions of BSDE. For details about this theory we refer the reader to Kazamaki (1994).

Let Φ be aBMO(F ,Q) martingale withΦ0 = 0. Φ being square integrable, the martingale
representation Theorem yields a square integrable processφ such thatΦt =

∫ t
0 φsdWs, t ∈ [0,T].

Hence theBMO(F ,Q) norm ofΦ can be alternatively expressed as

sup
τ F−stopping time in[0,T]

EQ
[

∫ T

τ
φ2

s ds|Fτ

]

< ∞.

Lemma 2 (Properties of BMO martingales).Let Φ be a BMO martingale. Then we have:

1) The stochastic exponentialE (Φ) is uniformly integrable.

2) There exists a number r> 1 such thatE (ΦT) ∈ Lr . This property follows from theReverse
Hölder inequality. The maximal r with this property can be expressed explicitlyin terms of
the BMO norm ofΦ .

3) If Φ =
∫ ·

0 φsds has BMO norm C, then for p≥ 1 the following estimate holds

E[
(

∫ T

0
|φs|

2ds
)p

]≤ 2p!(4C2)p.

Hence BMO⊂ H p for all p ≥ 1.

Appendix 2 – Basics of Malliavin’s calculus

We briefly introduce the main notation of the stochastic calculus of variations also known as
Malliavin’s calculus. For more details, we refer the readerto Nualart (2006). LetS be the
space of random variables of the form
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ξ = F
(

(
∫ T

0
h1,i

s dW1
s )1≤i≤n, · · · ,(

∫ T

0
hd,i

s dWd
s )1≤i≤n)

)

,

whereF ∈C∞
b (R

n×d), h1, · · · ,hn ∈ L2([0,T];Rd), n∈ N. To simplify notation, assume that all
h j are written as row vectors. Forξ ∈ S , we defineD = (D1, · · · ,Dd) : S → L2(Ω × [0,T])d

by

Di
θ ξ =

n

∑
j=1

∂F
∂xi, j

(

∫ T

0
h1

t dWt , . . . ,
∫ T

0
hn

t dWt

)

hi, j
θ , 0≤ θ ≤ T, 1≤ i ≤ d,

and fork∈ N its k-fold iteration by

D(k) = (Di1 · · ·Dik)1≤i1,··· ,ik≤d.

Fork∈ N, p≥ 1 letDk,p be the closure ofS with respect to the norm

‖ξ‖p
k,p= E

[

‖ξ‖p
Lp +

k

∑
i=1

‖|D(k)]ξ |‖p
(H p)i

]

.

D(k) is a closed linear operator on the spaceDk,p. Observe that ifξ ∈ D1,2 is Ft-measurable
thenDθ ξ = 0 for θ ∈ (t,T]. Further denoteDk,∞ = ∩p>1D

k,p.
We also need Malliavin’s calculus for smooth stochastic processes with values inRm. For

k ∈ N, p ≥ 1, denote byLk,p(R
m) the set ofRm-valued progressively measurable processes

u= (u1, · · · ,um) on [0,T]×Ω such that

i) For Lebesgue-a.a.t ∈ [0,T], u(t, ·) ∈ (Dk,p)m;

ii) [0,T]× Ω ∋ (t,ω) 7→ D(k)u(t,ω) ∈ (L2([0,T]1+k))d×n admits a progressively measurable
version;

iii)‖u‖p
k,p= ‖u‖p

H p +∑k
i=1‖Diu‖p

(H p)1+i < ∞.

Note that Jensen’s inequality gives for allp≥ 2

E

[(

∫ T

0

∫ T

0
|DuXt |

2dudt
)

p
2
]

≤ T p/2−1
∫ T

0
‖DuX‖p

H pdu.

Appendix 3 – Some results on SDE

We recall results on SDE known from the literature that are relevant for this work. We state our
assumptions in the multidimensional setting. However, forease of notation we present some
formulas in the one dimensional case.

Theorem 9 (Moment estimates for SDE).Assume that (H0) holds. Then (1) has a unique
solution X∈S 2 and the following moment estimates hold: for any p≥ 2 there exists a constant
C> 0, depending only on T , K and p such that for any x∈ Rm,s, t ∈ [0,T]

E[ sup
0≤t≤T

|Xt |
p ]≤CE

[

|x|p+
∫ T

0

(

|b(t,0)|p+ |σ(t,0)|p
)

dt
]

,

E[ sup
s≤u≤t

|Xu−Xs|
p ]≤CE

[

|x|p+ sup
0≤t≤T

{

|b(t,0)|p+ |σ(t,0)|p
}

]

|t −s|p/2.
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Furthermore, given two different initial conditions x,x′ ∈ Rm, we have

E

[

sup
0≤t≤T

|Xx
t −Xx′

t |p
]

≤C|x−x′|p.

Theorem 10 (Classical differentiability). Assume (H1) holds. Then the solution process X of
(1) as a function of the initial condition x∈ Rm is differentiable and satisfies for t∈ [0,T]

∇Xt = Im+
∫ t

0
∇b(Xs)∇Xsds+

∫ t

0
∇σ(Xs)∇XsdWs, (21)

where Im denotes the m×m unit matrix. Moreover,∇Xt as an m×m-matrix is invertible for any
t ∈ [0,T]. Its inverse(∇Xt)

−1 satisfies an SDE and for any p≥ 2 there are positive constants
Cp and cp such that

‖∇X‖S p +‖(∇X)−1‖S p ≤Cp

and

E

[

sup
s≤u≤t

|(∇Xu)− (∇Xs)|
p+ sup

s≤u≤t
|(∇Xu)

−1− (∇Xs)
−1|p

]

≤ cp |t −s|p/2.

Theorem 11 (Malliavin Differentiability). Under (H1), X∈ L1,2 and its Malliavin derivative
admits a version(u, t) 7→ DuXt satisfying for0≤ u≤ t ≤ T the SDE

DuXt = σ(Xu)+
∫ t

u
∇b(Xs)DuXsds+

∫ t

u
∇σ(Xs)DuXsdWs. (22)

Moreover, for any p≥ 2 there is a constant Cp> 0such that for x∈Rm and0≤ v≤ u≤ t ≤ s≤T

‖DuX‖p
S p ≤Cp(1+ |x|p),

E[ |DuXt −DuXs|
p]≤Cp(1+ |x|p)|t −s|

p
2 ,

‖DuX−DvX‖p
S p ≤Cp(1+ |x|p)|u−v|

p
2 .

By Theorem 10, we have the representation

DuXt = ∇Xt(∇Xu)
−1σ(Xu)1[0,u](t), for all u, t ∈ [0,T].

Appendix 4 – Path regularity for Lipschitz FBSDE

We state a version of theL2-regularity result for FBSDE satisfying a global Lipschitz condition.
The result which was seen to be closely related to the convergence of numerical schemes for
systems of FBSDE is due to Zhang (2001). For our FBSDE system (1), (2) we assume that
b,σ , f ,g are deterministic measurable functions that are Lipschitzcontinuous with respect to
the spatial variables and12-Hölder continuous with respect to time. Furthermore we assume that
σ satisfies (13). Then from El Karoui et al. (1997) one easily obtains existence and uniqueness
of a solution triple(X,Y,Z) of FBSDE (1), (2) belonging toS 2×S 2×H 2. For a partitionπ
of [0,T] define the process̄Zπ as in (15). Then the following result holds.
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Theorem 12 (Path regularity result of Zhang (2001)).Let (X,Y,Z) ∈S 2×S 2×H 2 be the
solution of FBSDE (1), (2) in the setting described above. Then there exists C∈ R+ such that
for any partitionπ = {t0, · · · , tN} of the time interval[0,T] with mesh size|π| we have

max
0≤i≤N−1

{

sup
t∈[ti ,ti+1)

E

[

|Yt −Yti |
2
]}

+
N−1

∑
i=0

E

[

∫ ti+1

ti
|Zs− Z̄π

ti |
2ds

]

+
N−1

∑
i=0

E

[

∫ ti+1

ti
|Zs−Zti |

2ds
]

≤C|π|.
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22 Peter Imkeller· Gonçalo Dos Reis· Jianing Zhang
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