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Abstract We consider the problem of numerical approximation for famivbackward stochas-
tic differential equations with drivers of quadratic grem{ggFBSDE). To illustrate the signif-
icance of qgFBSDE, we discuss a problem of cross hedging afisurance related financial
derivative using correlated assets. For the convergenaeroérical approximation schemes for
such systems of stochastic equations, path regularityeo$dfution processes is instrumental.
We present a method based on the truncation of the driveexguittitly exhibit error estimates
as functions of the truncation height. We discuss a reductiethod to FBSDE with globally
Lipschitz continuous drivers, by using the Cole-Hopf expuis transformation. We finally
illustrate our numerical approximation methods by givingudations for prices and optimal
hedges of simple insurance derivatives.
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1 Introduction

Owing to their central significance in optimization probkefor instance in stochastic finance
and insurance, backward stochastic differential equat{@EDE), one of the most efficient
tools of stochastic control theory, have been receivinghmattention in the last 15 years. A
particularly important class, BSDE with drivers of quadragrowth, for example, arise in the
context of utility optimization problems on incomplete rketis with exponential utility func-
tions, or alternatively in questions related to risk mirgation for the entropic risk measure.
BSDE provide the genuinely stochastic approach of contablems which find their analyti-
cal expression in the Hamilton-Jacobi-Bellman formalismDESwith drivers of this type keep
being a source of intensive research.

As Monte-Carlo methods to simulate random processes, noaieghemes for BSDE pro-
vide a robust method for simulating and approximating sohg of control problems. Much
has been done in recent years to create schemes for BSDE \p#hhiiz continuous drivers
(see Bouchard and Touzi (2004) or Elie (2006) and referemssin). The numerical approx-
imation of BSDE with drivers of quadratic growth (qgBSDE) os®ms of forward-backward
stochastic equations with drivers of this kind (qgFBSDEh&dt out to be more complicated.
Only recently, in dos Reis (2009), one of the main obstaclesovarcome. Following Bouchard
and Touzi (2004) in the setting of Lipschitz drivers, thestgy to prove convergence of a nu-
merical approximation combines two ingredients: regtyaof the trajectories of the control
component of a solution pair of the BSDE in th&sense, a tool first investigated in the frame-
work of globally Lipschitz BSDE by Zhang (2001), and a conegrtia priori estimate for the
solution. See Bouchard and Touzi (2004), Gobet et al. (2@@&grue and Menozzi (2006) or
Bender and Denk (2007) for numerical schemes of BSDE with dipbhgschitz continuous
drivers, and an implementation of these ideas. The maircdifi treated in dos Reis (2009)
consisted of establishing path regularity for the contahponent of the solution pair of the
qgBSDE. For this purpose, the control component, known teepeesented by the Malliavin
trace of the other component, had to be thoroughly invetstibm a subtle and complex study
of Malliavin derivatives of solutions of BSDE. This study ertls a thorough investigation of
smoothness of systems of FBSDE by methods based on Malkazaculus and BMO martin-
gales independently conducted in Ankirchner et al. (20@ni) Briand and Confortola (2008).
The knowledge of path regularity obtained this way is impabed in a second step of the
approach in dos Reis (2009). The quadratic growth part of tiverds truncated to create a se-
guence of approximating BSDE with Lipschitz continuous elirss Path regularity is exploited
to explicitly capture the convergence rate for the soliofthe truncated BSDE as a function
of the truncation height. The error estimate for the truiocatwhich is of high polynomial or-
der, combines with the ones for the numerical approximatiany existent numerical scheme
for BSDE with Lipschitz continuous drivers, to control thewergence of a numerical scheme
for qgBSDE. It allows in particular to establish the convergeorder for the approximation of
the control component in the solution process.

An elegant way to avoid the difficulties related to driversgofadratic growth, and to fall
back into the setting of globally Lipschitz ones, considtsising a coordinate transform well
known in related PDE theory under the name “exponential Eapf transformation”. The
transformation eliminates the quadratic growth of the elrim the control component at the
cost of producing a transformed driver of a new BSDE which inegel lacks global Lipschitz
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continuity in the other component. This difficulty can be iaea by some structure hypotheses
on the driver. Once this is done, the transformed BSDE enjmjsdjLipschitz continuity prop-
erties. Therefore the problem of numerical approximatian be tackled in the framework of
transformed coordinates by schemes well known in the Lipssltting. As stated before, this
again requires path regularity results in ttfesense for the control component of the solution
pair of the transformed BSDE. For globally Lipschitz contns drivers Zhang (2001) provides
path regularity under simple and weak additional assumgtguch a%-HbIder continuity of
the driver in the time variable. The smoothness of the Colpfifansformation allows passing
back to the original coordinates without losing path regtyaln summary, if one accepts the
additional structural assumptions on the driver, the egptial transformation approach pro-
vides numerical approximation schemes for qgBSDE under &rekoothness conditions for
the driver.

In this paper we aim to give a survey of these two approachebtan numerical results
for qgBSDE. Doing this, we always keep an eye on one of the mgsbitant applications of
ggBSDE, which consists of providing a genuinely probabdiapproach to utility optimization
problems for exponential utility, or equivalently risk nmimzation problems with respect to the
entropic risk measure, that lead to explicit descriptionsrices and hedges. We motivate qgB-
SDE by reviewing a simple exponential utility optimizatiproblem resulting from a method to
determine the utility indifference price of an insurandated asset in a typical incomplete mar-
ket situation, following Ankirchner et al. (2007b) and F(2D09). The setting of the problem
allows in particular the calculation of the driver of quatrayrowth of the associated BSDE.
After discussing the problem of numerical approximationghis case by applying the method
related to the exponential transform, we are finally abldustrate our findings by giving some
numerical simulations obtained with the resulting scheme.

The paper is organized as follows. In Section 2 we fix the ratatsed for treating problems
about qgFBSDE and recall some basic results. Section 3 igetbwo presenting utility opti-
mization problems used for pricing and hedging derivatmesion-tradable underlyings using
correlated assets in a utility indifference approach. ttiea 4 we review smoothness results for
the solutions processes of qgFBSDE, and apply them to $Rewgularity of the control com-
ponent of the solution process of a gqgFBSDE. In Section 5 waudssthe truncation method
for the quadratic terms of the driver to derive a numericgragimation scheme for qgFBSDE.
Section 6 is reserved for a discussion of the applicabilitthe exponential transform in the
qgBSDE setting. In Section 7 we return to the motivating pgcnd hedging problem and use
it as a platform for illustrating our results by numericahsiations.

2 Preliminaries

Fix T € Ry = [0,). We work on the canonical Wiener spat@,.#,P) on which ad-
dimensional Wiener proce¥ = (W1,-.. W) restricted to the time intervdd, T] is defined.
We denote by7 = (4 )ic[o,1) its natural filtration enlarged in the usual way by theero sets.

Let p>2 m.d € N, Q be a probability measure df2,.%). We use the symbd? for the
expectation with respect t9, and omit the superscript for the canonical mea&uréo denote
the stochastic integral process of an adapted pracegish respect to the Wiener process on
[0,T], we writeZ*W = [ ZsdW\&.
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For vectorsx = (xL,---,xM) in Euclidean spac&™ we denotelx| = (y™,(x)2)2. In our
analysis the following normed vector spaces will play a.rgle denote by
e LP(R™ Q) the space of#r-measurable random variabl¥s Q — R™, normed by||X||Lp=
1
EQ[|X|P]»; L™ the space of bounded random variables;

o /P(R™M) the space of all measurable procesfésc(or) with values inR™ normed by
p
IY]|.op = E[(supe[oﬂ M]) ]le; % (R™M) the space of bounded measurable processes;

o JP(R™ Q) the space of all progressively measurable proce&so 1) with values inR™
1

p/2
normed by|Z|l»» = E%[(Jg Zsf2ds) " 17;

e BMO(.7,Q) or BMO,(.#,Q) the space of square integratslemartingalesp with @ =0
and we set
< 0o,

o]

|®3wox.7.0)= Sup| E2 (@)1 — (@):| 7]

where the supremum is taken over all stopping times|[0, T|. More details on this space
can be found in Appendix 1. In caggresp..# is clear from the context, we may omit the
argumentg) or .# and simply writeBMO(Q) resp.BMO(.%) etc;

o DKP(RY) andLy 4(RY) the spaces of Malliavin differentiable random variables processes,
see Appendix 2.

In case there is no ambiguity abauator Q, we may omit the reference ®™ or Q and simply
write .7 or P etc.

We investigate systems of forward diffusions coupled walkkward stochastic differential
equations with quadratic growth in the control variableRB§DE for short), i.e. giver € R™,
t € [0,T], and four continuous measurable functidng, g and f we analyze systems of the
form

t t
X =xc+ [ bsX)ds+ [ ols X, (1)
T T
Y= g0+ [ T XY Zds— | Ziawe )

In case there is no ambiguity about the initial statef the forward system, we may and do
suppress the superscripand just writeX, Y, Z for the solution components. For the coefficients
of this system we make the following assumptions:

(HO) There exists a positive constagtsuch thatb, g; : [0, T] x R™ — R™ 1 <i < d, are uni-
formly Lipschitz continuous with Lipschitz constalkt andb(-,0) andg;(-,0),1 <i <d, are
bounded byK.

There exists a constaM € R, such thatg : R™ — R is absolutely bounded b, f :
[0, T] xR™x R x RY — R is measurable and continuougiy, z) and for(t,x) € [0, T] x R™,
y,Y € R andz,Z € RY we have

(t,%,Y,2)] <M(L+]y|+|Z?),
1(txy.2) = f(t.xY,2)| <M{ly—y|+(1+[2+[Z])|z—2]}.
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The theory of SDE is well established. Since we wish to focuthe backward equation compo-
nent of our system we emphasize that the relevant resul&3&rare summarized in Appendix
3.

Theorem 1 (Properties of qgFBSDE)Under (HO), the system (1), (2) has a unique solution
(X,Y,2Z) € #? x .7 x 2. The respective norms of Y and Z can be dominated from above by
constants depending only on T and M as given by assumption fd@&hermore

ZxW = /‘ZSGWS € BMO(P) and hence for all p> 2 one has Z= #P.
0

It is possible to go beyond the bounded terminal conditiguotiyesis by imposing the existence
of all its exponential moments instead. In this cas&V is no longer inBMO. As we shall see

in Section 4, thdBMO property ofZ «W plays a crucial role in all of our smoothness results
for systems of FBSDE. It combines with the inverséldter inequality for the exponentials
generated by8MO martingales to control moments of functionals of the sohsiof FBSDE.
Smoothness of solutions is instrumental for instance imasés for numerical approximations
of solutions.

3 Pricing and hedging with correlated assets

The pivotal task of mathematical finance is to provide sotidnidations for the valuation of
contingent claims. In recent years, markets have displapedcreasing need for financial in-
struments pegged to non-tradable underlyings such as tatmpeand energy indices or toxic
matter emission rates. In the same manner as liquidly tradelérlyings, securities on non-
tradable underlyings are used to measure, control and reaiskg, as well as to speculate and
take advantage of market imperfections. Since non-trétiapioduces residual risks which are
innate and inaccessible to hedging, institutional invesdtwok for tradable assets which are cor-
related to the non-tradable ones. In incomplete marketsestablished pricing paradigm is the
utility maximization principle. Upon choosing a risk predace, investors evaluate contingent
claims by replicating according to an investment stratégy yields the most favorable utility
value. Interplays and connections between the pricing ofiegent claims on non-tradable un-
derlyings and the theory of qgFBSDE were studied, among sthgrAnkirchner et al. (2007a),
Morlais (2009), Imkeller et al. (2009), and recently by F2009). Based on this setup, we
consider the problem of numerically evaluating contingdatims based on non-tradable un-
derlyings. This will be done by intervention of the exponantransformation of qgBSDE, to
be introduced in Section 6. It allows to work under weakeuagsions than the numerical
schemes for qgFBSDE based on the results reviewed in Sectaomd4vill allow some illustra-
tive numerical simulations in Section 7.

The following toy market setup can be found in Section 4 of 2609). Assumel = 2,
so thatW = (W1, W?) is our basic two-dimensional Brownian motion. We use therrefing a
third Brownian motion2 correlated taV? with respect to a correlation coefficiente [—1, 1]
according to

S S
WSS::/ pdvvu1+/ 1-p2dW2, 0<s<T.
0 0
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Contingent claims are assumed to be tied to a one-dimensgionaradable index that is subject
to

dR = p(t,R)dt + o(t,R)dW!, Ry =ro >0, 3)

wherep, 0 : [0,T] x R — R are deterministic measurable and uniformly Lipschitz cardgus
functions, uniformly of (at most) linear growth in their stavariable. The securities market is
governed by a risk free bank account yielding zero intenegtame correlated risky asset whose
dynamics (with respect to the zero interest bank accouneraire) are governed by

a5
S
In compliance with Ankirchner et al. (2007a), we assumedh#: [0, T| x R — R are bounded

and measurable functions, and furtherm@rgt,r) > £ > 0 holds uniformly for some fixed
€ > 0. Next, we set

= a(s,Rs)ds+ B(s,Rs) WS, S =59 > 0. (4)

a(s,r)
B(sr)

and note that the conditions @nand imply that 8 is uniformly bounded.
An admissible investment strategy is defined to be a reaiedalmeasurable predictable
process\ such thatfoT AZ2du < o holdsP-almost surely and such that the family

B(sr):= , (8r)€[0,T| xR,

{e‘”m“% : T stopping time with values ifD,T]} (5)

is uniformly integrable. The set of all admissible invesimstrategies is denoted by In the
following, lett € [0, T] denote a fixed time. Then the set of all admissible investrsieategies
living on the time intervalt, T] is defined analogously and we denote itddy Letv; denote the
investor’s initial endowment at tinte that is, v is an.#;-measurable bounded random variable.
The gain of the investor at timee [t,T], denoted byGs, is subject to trading according to
investingA into the risky asset, and therefore given by

dG) = Asdgsi G =0.
We focus on European style contingent claims, i.e. payaffiles resuming the fornf (Rr)
where we assume, in accordance with Ankirchner et al. (20@7atF : R — R is measurable
and bounded. Moreover the investor’s risk assessment pessthat her utility preference is
reflected by the exponential utility function, so given a neno constant risk attitude parameter
n, the investor’s utility function is

U(x)=—-e T xeR.

The evolution of the investor’s portfolio over the time intal [t, T] consists of her initial en-

dowmentv;, her gains (or losses) via her investment into the riskytassger an investment
strategyA and holding one share of the contingent cldi{Rr). Her objective is to find an

investment strategy such that her timetility is maximized, i.e. her maximization problem is
given by
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VF () = sup{IE [u (W + G2 +F(RT))\54}} ‘A e m}
:exp{—nvt}sup{IE [u@ﬁﬂ%))]%} ) eﬁ} (6)
For the sake of notational convenience, we write
V& =V (0) = sup{E |U(G} +F(Rr))| %] : A € a4} W
Now pricing F (Rr) within the utility maximization paradigm is based on theritity
V) =V (% — ).

whereV,%(v) denotes the time-utility with initial endowmentv; and withF = 0 (see also
Section 2 of Ankirchner et al. (2007a) and Section 3 of FreD@). According to this identity,
the investor is indifferent about a portfolio with initiahédowmenty; without receiving one
quantity of the contingent clairk (Rr) and a portfolio with initial endowment; — p;, now
receiving one quantity of the contingent claim in additiblencep is interpreted as the timie-
indifference price of the contingent claif(Rr). By the equality™ (v) = exp{—nw}V;", it
follows that

1. VO

t
=0 |09th, 8
which means that the indifference price does not depend @mnitial endowment;. Since
the timet indifference price (8) is fully characterized M andV;", the focus now lies in the
investigation of (6). In fact, Ankirchner et al. (2007a) dfei (2009) have already pointed out
that (7) yields a characterization by means of a qgFBSDE. ¢oraance with Frei (2009), let
us denote by¥,)o<u<T the filtration generated By*, completed byP-null sets. Frei (2009)’s
main ideas for rephrasing (6) in terms of a qgBSDE are sumetiizthe following

Lemma 1. The qgFBSDE

Y, = F(RT)+/Tf(u,Zu)du—/TZuaWul, se[0,T], ©)
f(ur,z) = ezé—l:”r)—zpe(u,r)—%(l—pz) Z, (10)

has a unique solutiofY,Z) € .7 x 2 such that f = —e~M holdsP-almost surely.

Proof. Sincef(-,r) is uniformly bounded an&-predictable, the driver of (9) satisfies the con-
ditions of Kobylanski (2000); thus (9) admits a unique siolut(Y,Z) € .® x 2. More-
over, Mania and Schweizer (2005) have shown fatV! is both a BMO%)- and BMO)-
martingale. See also Ankirchner et al. (2007a). To provedaatity Vi = —e~™, we notice
that

e N(G-¥1) _ g NGl g-Mg-n(¥r—%)g—n(G1-G)

—NY o—N(Yr—Y) o—n (GL -G}
— e Mg n(MT—Y)g-n(G}-G)
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becaus&; = 0. We then have

exp{—n (Yr —%)}exp{—n(G} —G)}
— exp{—n </tT Zud\NulJr/tT AuB(u, Ru)dvvu?’) +/tT [Auar (U, Ry) — f(u,Ru,Zu)]du}.

Denoting&>(M) = &(M)s/& (M), fort <s< T where&(M)s is the stochastic exponential of
a given semi-martingalll, we introduce

1 2
Ku:i= E(rl (PZy+B(u,Ru)Ay) — 9u> , t<u<T.

Then a simple calculation yields
eXD{ —n(Yr —Yt)}exp{ -n(G} —G?)}

_aT </ nZdw? — /n)\B aW3>exp{/ Kudu}.

SinceAB(-,R) *W?3 is a BMO-martingale, we can condition with respect to thalgebra.%;
and get

B [e—n(GéfF(RT)) | %} — e Mgk Kudu > =¥ (11)

By (5) and a localization argument, this inequality holdsdeeryA € <%, and therefore we
have\/t g —e~™, To prove equality, note that the inequality (11) becomeauality for

_ 6(uRy) .
)\u = )Zu + NBURY) this in conjunction with the observation that

exp{—nﬁudg} = exp{—nG’}} = exp{—n (G;‘ _Gf\>}

= &7 (/_r,zdwl—/niﬁ(-, R)dw3) xexp{—n (Yr =)}

is the product of a bounded process and t#xenartingale yields that condition (5) is satisfied.
HenceA < o4 and we have showd™ = —e ",

The proof of the previous Lemma 1 yields the following

Corollary 1. The investment strategy

As = — P O(s,Rs) t<s<T, (12)

BsR) S nBsR) =0

where Z is the control component of the solutiori) belongs towt and satisfies

E[U(v+ G +F(RT)\%} - sup{E [u ( + G +F(RT)\%} ‘A€ m} =V{F (w).

One application is given in the following example.
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Example 1[Put option on kerosene, compare with Example 1.2 from Attiier et al. (2007a)]
Facing recent considerable declines in world oil pricegyganies producing kerosene wish to
partially cover their risk of such a depreciation. Europpatoptions are an established financial
instrument to comply with this demand of risk covering. ®ikerosene is not traded in a liquid
market, derivative contracts on this underlying must baraged on an over-the-counter basis.
Knowing that the price of heating oil is highly correlatediwihe price of kerosene, the pricing
and hedging of a European put option on kerosene can be dandymamic investment in (the
liquid market of) heating oil. A numerical treatment of tipigcing problem will be displayed
in Section 7.

4 Smoothness and path regularity results

The principal aim of this paper is to survey some recent tesul the numerical approximation
of prices and hedging strategies of financial derivativefi sis the liabilityF (Ry) in the setting
of the previous section. As we saw, this leads us directlgiEBFDE. In the subsequent sections
we shall discuss an approach based on a truncation of therdrgguadratic part in the control
variable. It will be crucial to give an estimate for the ercommitted by truncating. Our error
estimate will be based on smoothness results for the catdrnponenZ* of solutions of the
BSDE part of our system. Smoothness is understood both ireteef regular sensitivity to
initial statesx of the forward component, as well as in the sense of the sstichealculus of
variations. Since the control component of the solution 8fSDE is related to the Malliavin
trace of the other component, we will be led to look at vaoiaail derivatives of the first order.
Our first result concerns the smoothness of the i@ap] x R™ 5 (t,x) — Z¥, especially
its differentiability inx. The second result refers to the variational differentighof (Y*,Z¥)
in the sense of Malliavin’s calculus. We shall work under tbiéowing hypothesis, where we
denote the gradient by the common symbioland by(],, if we wish to emphasize the variable
u with respect to which the derivative is taken.

(H1) Assume that (HO) holds. For any<Ot < T the functionsh(t,-), gi(t,-),1 <i <d, are
continuously differentiable with bounded derivatives I tspatial variable. There exists a
positive constant such that

ylot,x)o’ (t,x)y>clyl?, xyeR™ te[0,T]. (13)

f is continuously partially differentiable ifx,y,z) and there exist81 € R, such that for
(t,%,¥,2) € [0, T] x R™x R x RY

Oxf (t,%,y,2)| < M(1+Jy|+2°),
|Dyf(t7x7yuz)| S M7
[0f (t,xy,2)| < M(1+|2).

g: R™— R is a continuously differentiable function satisfyifigg| < M.
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Smoothness results

The following differentiability results are extensionsieorems proved in Ankirchner et al.
(2007b) and Briand and Confortola (2008). For further detadsnments and complete proofs
we refer to the mentioned works or to dos Reis (2009).

Theorem 2 (Classical differentiability). Suppose that (H1) holds. Then for all>p2 the so-
lution process®* = (X*,Y* ZX) of the qgFBSDE (1), (2) with initial vector & R™ for the
forward component belongs t&’P x .#P x #P. The applicationR™ > x — (X*,Y* Z¥) €

SP(R™M) x .ZP(R) x #P(RY) is differentiable. The derivatives of X* satisfy (21) while
the derivatives of the map—¢ (Y*,Z¥) satisfy the linear BSDE

T T
OV = Og(X) X — / OZX W + / (Of(s,0%),004ds, te[0,T].
t t

Theorem 3 (Malliavin differentiability). Suppose that (H1) holds. Then the solution process
(X,Y,Z) of FBSDE (1), (2) has the following properties. FoExR™,

o X* satisfies (22) and forang <t < T, xe R™we haveY*,Z*) € L1 2 x (]Llﬁz)d. XX fulfills
the statement of Theorem 11, and a versiofDafY{", DuZ)o<ut<T satisfies

D)Y*=0, DZX=0, t<u<T,
T T
Do = Dg(X¥)DXX + / (Of (5,0%), Dy@Y) ds— / DZXWk, te[u,T.
t t

Moreover,(DY")o<t<T defined by the above equation is a versiofiZ)f)o<;<.
e The following representation holds for aBy< u <t < T and xe R™

DuY* = O (OX) to(u, X)),  as,
Z = O (0 Lo (s, XY), as.

Regularity and bounds for the solution process

A careful analysis oDY in both its variables under the smoothness assumptionseonah
efficients of our system formulated earlier reveals theofelhg continuity properties for the
control procesg.

Theorem 4 (Time continuity and bounds).Assume (H1). Then the control process Z of the
qgFBSDE (1)-(2) has a continuous version[0nT |. Furthermore for all p> 2 it satisfies

1Z][7p < 0. (14)

Theorem 5 (Regularity). Under (H1) the solution proces¥,Y,Z) of the qgFBSDE (1), (2)
satisfies for all p> 2

i) there exists a constantC> 0 such that for0 <s<t < T we have

E[ sup |Yy — Ys|P] < Cplt —§%;

s<u<t
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ii) there exists a constantgC> 0 such that for any partitiorrr= {tg,---tn} withO=tg < --- <
ty = T of [0, T] with mesh sizér]

5 e[([ - ara)) scant

Now leth=T/N, m¥ = {tt =ih:i =0,--- ,N} be an equidistant partition ¢, T] with
N + 1 points and constant mesh sizel et Z be the control component in the solution of the
ggFBSDE (1), (2) under (H1) and define the family of randomalalgs

Zm = %Euti“zsds%}, t e\ {tn ). (15)

For 0<i < N-—1 the random variablz_{iTN is the best# -measurable approximation @fin
%2([ti,ti+1]), i.e.

i1 _ tit1
IE[/ 27 o :ip\fE[/ “zs— AJ2ds],
ti ti

whereA is allowed to vary in the space of all square integralemeasurable random vari-
ables. By constant interpolation we defE}’éV Zt"N fort e [tj,ti1[, 0<i < N-1. Itis easy
to see tha(Zt Jteo,T) converges tdZ )ico.) I #°?[0,T] ash vanishes. Sinc& is adapted

there exists a family of adapted procesZéfg indexed by our equidistant partitions such that
Zt"N =7 fort € [ti,ti11) and thaz™™" converges t& in .72 ash tends to zero. Sincg™ is the
best.s#?-approximation o, we obtain

||Z Z ||ji”2< HZ Z ||%2—>0, ash— 0.

The following Corollary of Theorem 5 extends Theorem 3.4.Zlrang (2001) (see Theorem
12) to the setting of qgFBSDE.

Corollary 2 (L2-regularity of Z). Under (H1) and for the sequence of equidistant partitions
(mV)nen Of [0, T] with mesh size k §;, we have

N—-1

max { sup E[M—Ytilz]}+i;E[/titi”\zs—z]?“yzds <Ch,

O<I<N=1 % teftitiia)

where C is a positive constant independent of N.

Remark 1The above corollary still holds if (H1) is weakened. Moregsely, the corollary’s
statement remains valid if one replaces in (H1) the sentence

“g:R™— Ris a continuously differentiable function satisfyifigg| < M.”

by
“g:R™— Ris uniformly Lipschitz continuous in all its variablés

The proof requires a regularization argument.
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5 A truncation procedure

To the best of our knowledge so far none of the usual disatsbiz schemes for FBSDE has
been shown to converge in the case of systems of FBSDE coedidethis paper, the driver
of which is of quadratic growth in the control variable. Tregularity results derived in the
preceding section have the potential to play a crucial ml@imerical approximation schemes
for qgFBSDE. We shall now give arguments to substantiatecthim. In fact, the regularity of
the control component of the solution processes of our BSDHeaid to precise estimates for
the error committed in truncating the quadratic growth pathe driver. We will next explain
how this truncation is done in our setting.

We start by introducing a sequence of real valued funct@ﬁmﬁ,eN that truncate the identity
on the real line. Fon € N the mapﬁn is continuously differentiable and satisfies

e hy — id locally uniformly, |hn| < |id| and|hy| < n+ 1; moreover

N (n+1) ,x>n+2,
hn(X) = X 7’X| S n7
—(n+1) ,x< —(n+2);

e the derivative ofi, is absolutely bounded by 1 and converges to 1 locally unifprm

We remark that such a sequence of functions exists. The alequérements are for instance
consistent with

= [ (—=n?42nx—x(x—4))/4 ,x€ [n,n+2],
n(X) = { ((n2+2nx+x(x+4))}4 X € [=(n+2),—n.

We then defindy, : RY — RY by z— hn(2) = (hn(z1),--- ,hn(z4)), n € N. The sequencén)nex
is chosen to be continuously differentiable because thpepties stated in Theorem 4 need to
hold for the solution processes of the family of FBSDE thattthacation sequence generates
by modifying the driver according to the following definitio

Recalling the driverf of BSDE (2), forn € N we definefy(t,x,y,z) := f(t,x,y,hn(2)),
(t,x,y,2) € [0, T] x R™x R x RY. With this driver and (1) we obtain a family of truncated BSDE

by
T T
Y = g(Xr) + / fn(5 Xe, YO, Z0) s — / Z'dWs, te[0,T],neN. (16)
t t

The following Theorem proves that the truncation error $etida polynomial deviation of
the corresponding solution processes in their natural apfonmulated for polynomial order
12.

Theorem 6.Assume that (H1) is satisfied. FixalN and let X be the solution of (1). LéY,Z)
and(Y",Z") <y be the solution pairs of (2) and (16) respectively. Then fopa> 2 there exists
a positive constant gsuch that for all ne N

T b 1
n_v|P n_ -2 2 < e
E[tes[(lig] Y- P] +E[(/O 28— 2zfs) *] < Cp .
The proof of Theorem 6 roughly involves estimating the piolits that Z" exceeds the thresh-
oldnas afunction oh € N through Markov’s inequality. The application of Markowssiquality
is possible thanks to (14).
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6 The exponential transformation method

In the preceding sections we exhibited the significance di pagularity for the solution of
systems of qgFBSDE, in particular the control componentiHeir numerical approximation.
In this section we shall discuss an alternative route to peghlarity of solutions in a particu-
lar situation that allows for weaker conditions than in tmegeding sections. We will use the
exponential transform known in PDE theory as the Cole-Haogfigformation. This mapping
takes the exponential of the compon&nof a solution pair as the new first component of a
solution pair of a modified BSDE. It makes a quadratic term eédbntrol variable of the form
z+— y|z|? vanish in the driver of the new system. The price one has tdgahis approach is a
possibly missing global Lipschitz condition in the variaplfor the modified driver. It is there-
fore not clear if the new BSDE is amenable to the usual nunletisaretization techniques.
We give sufficient conditions for the transformed driver &aisfy a global Lipschitz condition.
In this simpler setting our techniques allow an easier actesmoothness results for the solu-
tions of the transformed BSDE. The Cole-Hopf transformatieim¢y one-to-one, it is clear that
regularity results carry over to the original qgFBSDE.

Under (HO), we consider the transformatibr= €Y andQ = yPZ. It transforms our qgB-
SDE (2) with driverf into the new BSDE

logPs Qs> 1‘Q|s
y yPs 2 I:)s

Combining (17) with SDE (1), we see that for apy> 2 a unique solutioriX,P,Q) € ./P x
S* x 7P of (1) and (17) exists. The properties of this triple folloverh the properties of the
solution (X,Y, Z) of the original qgFBSDE (1) and (2). For clarity, we remarkttbmceY is
boundedP is also bounded and bounded away from 0. The latter propkotysaus to deduce
from the BMO martingale property & «W the BMO martingale property d «W. For the
rest of this section we denote by a compact subset @b, +-o) for some constand € R in
which P takes its values.

The form of the driver in (17) indicates that after transforgndrivers of the form of the
following hypothesis, we have good chances to deal with adhiiz continuous one.

)
R = /8% 4 / Pt (5%, 0 ds— [ Qv te0T.  (7)
t

(HO*) Assume that (HO) holds. Fgre R let f : [0, T] x R™ x R x RY — R be of the form
(X2 = 1(txy) +alt.2) + 3|2,
wherel anda are measurabld, is uniformly Lipschitz continuous irx andy, a is uni-

formly Lipschitz continuous and homogeneouszjri.e. forc € R, (s,z) € [0,T] x RY we
havea(s,cz) = ca(s, z); | anda continuous irt.

Assumption (HO*) allows us to simplify the BSDE obtained fréine exponential transforma-
tion to

T T
R = 90 4 / F (S, X, Py, Qs)dS— / QM te[0,T], (18)
t t

where the driver is defined by
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F:[OT]xR"x.# xRY - R,

lo
(% P.0) = yPI(S% —2) + ypa(s, ). (19)
y yp
Thanks to the homogeneity assumptionaoour driver simplifies further. Indeed, we have for

(s,X,p,9) € [0, T] x R™x R x RY

lo
F(s,x,p,q) = ypl(s.x, %’) +a(s,q). (20)

The terminal condition of the transformed BSDE still keeps fioperties it had in the
original setting. Indeed, boundednesg & inherited by expyg). Furthermore, ifyis uniformly
Lipschitz, then clearly by boundednessgpthe functione”? is uniformly Lipschitz as well.

Let us next discuss the properties of the driver (19) in taedformed BSDE. We recall that
sincel anda are Lipschitz continuous, there is a const@nt 0 such that for alls,x, p,q) €
[0,T] x R™x %" x RY we have

lo
IF(s.x,p,q)| < |VI0|(S,X7%) +a(s,q)]

< CIp|(1+ x|+ [logp|+|a]) <C(1+ x|+ |p|+|al).

This means thak is of linear growth inx, p andg.
To verify Lipschitz continuity properties df in its variablesx, p andqg, by (20) and the
Lipschitz continuity assumptions @ it remains to verify that

(X, p) — Vpl(S,X,lo%))

is Lipschitz continuous ix and p, with a Lipschitz constant independentf [0, T|. As for
X, this is an immediate consequence of the Lipschitz corttinofi | in x. For p we have to
recall thatp is restricted to a compact set” C R, not containing 0O, to be able to appeal to the
Lipschitz continuity ofl in y. This shows thaF is globally Lipschitz continuous in its variables
X, p andgq.

We may summarize these observations in the following Theore

Theorem 7.Let f: [0,T] x R x R x RY — R be a measurable function, continuous&f x
R x RY, and satisfying (HO*). Then F as defined by (19) is a uniforhipyschitz continuous
function in the spatial variables.

Theorem 7 opens another route to tackle convergence of mahsechemes via path regu-
larity of the control component of a solution pair of a qgFBS&JStem whose driver satisfies
(HO*). Look at the new BSDE after applying the Cole-Hopf tramgei. Since it possesses a Lip-
schitz continuous driver, path regularity for the contrargponentQ of the transformed BSDE
will follow from Zhang’s path regularity result stated in2fLprovided the driver i%-HbIder
continuous in time. Of course, by the smoothness of the ColefHansform, the control com-
ponentZ of the original BSDE will inherit path regularity froi®Q. This way we circumvent the
more stringent assumption (H1) which was made in section 4.

In what follows the triplegX,Y, Z) and (X, P, Q) will always refer to the solution of qgFB-
SDE (1), (2) and FBSDE (1), (18) respectively.
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Theorem 8.Let (H0*) hold. Assume thd®, T] x R™x .# x R4 5 (s,x, p,q) — F(s,X, p,q) € R,
the driver of BSDE (18), is uniformly Lipschitz inpxand g and i%-H'c')Ider continuous in s.
Suppose further that the map B9 — R, as indicated in (HO), is globally Lipschitz continuous
with Lipschitz constant K. L&X, Y, Z) be the solution of qgFBSDE (1), (2), and- 0 be given.
There exists a positive constant C such that for any partitio= {to,--- ,tn} withO=1tp, T =
tn,to < --- < ty of the interval[0, T|, with mesh sizér| we have

N-1

2 fi+1 7112 1-¢
max { sup E[)M-%[|}<cin and Z}E[/ 1Zs— Z7"?ds| < C|mte.
0<i<N-1 te[ti,ti+1) i= ti

Moreover, if the functions b and are continuously differentiable in& R™ then t— Z is a.s.
continuous in0, T].

Proof. Throughout this proo€ will always denote a positive constant the value of which may
change from line to line. LetX, P, Q) be the solution of (1) and (18), wheRetakes its values

in 22 andQxW is a BMO martingale. Applying Theorem 12 yields a positivestantC such
that for any partitionrt= {to, - - - ,tn} of [0, T| with mesh sizem|

ogrir;%xl{te[tsizﬁ)l)]E [||3t —-R |2} } + I:l;l]E [/titm Qs— @7|2d5] < Cjm.

SinceP takes its values in the compact sét C R, not containing O there exists a constént
such that forany & i <N -1t € [tj,ti;1)

’Yt_Yti‘ :C“OQR _IOgRi‘ SC’R _Ri|'

Using the two above inequalities we have

max { sup E[)%-%?[} <c max { sup B[|IR-R[|}<cim.

O<I=N—1 % tefti tig) O<i=N-1 Steft tiyq)

This proves the first inequality. For the second one, notehdefinition for 0<i < N—-1t €
[tiati+l)

1Q Q@ Qn Lol 11
z-zlsiz-zl < {Ig gty -l s ARlg g+ el
<c{lQIR-R|+IQ-q/}.

We therefore have for@ i <N-1

i1 _ ti11
E[/ AN gE[/ AR AL
i {j

<2c{E[ sup |R-R/? ti1|Qs\2ds]+IE[/ti”!c\2t—Qti!2ds]}.

teftitizg) i

SinceQ € 7P for all p > 2, for any two real numbers, 8 € (1,») satisfying Ya+1/8=1
we may continue using &lder’s inequality on the right hand side of the inequalitstjobtained,
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and then Theorem 12 to the term containgThis yields the following inequality valid for
any 0<i <N —1 with a constan€ not depending on

Bl [ iz 2] < c{E[ sup R -RPIVE(( [ idas)]

<clE[ sup R-R[%+|m} <c{|ms + |},

teftitiva)

R

+|m}

Now choosex = 1Tle’ to complete the claimed estimate.

To prove tha”Z admits a.s. a continuous version, it is enough to remarktiigat heorem’s
assumptions imply the conditions of Corollary 5.6 in Ma ané@dp (2002). The referred result
yields thatQ is a.s. continuous oj®, T]. SinceP is continuous and bounded away from zero we
conclude from the equatioyPZ = Q thatZ is a.s. continuous as well.

7 Back to the pricing problem

We now come back to the numerical valuation of the put optiorkerosene as depicted in
example 1. Notations in the following are adopted from Sec8. Assume that the put option
expires all = 1. LetRandSdenote the dynamics for the financial value of kerosene aatiige
oil respectively. In particular we assume both dynamicsttognormally distributed according
to

dR = u(t,R)dt + o (t,R)dW! = 0.12R dt + 0.41R, dW*,

%‘Q‘ — a(t,R)dt + B(t,R)dW = 0.1ct +0.35dA>,

and we assume the spot price for heating oil tafpe 173 money units (e.g. US Dollar, Euro),
see also equations (3) and (4). Risk aversion is set at thedéve= 0.3. Figure 1 displays
sample paths of the kerosene price with a spot pricg 6170 and heating oil price at different
correlation levels using the explicit solution formula thee geometric Brownian motion. We
see that the higher the correlation, the better the appwtiam of the kerosene by heating oil
becomes. We have seen that the valuation of the put optioatity maximization yields the
pricing formula (8) which in conjunction with Lemma 1 becasiike difference of two solutions
of a qgBSDE with the generator (10)

pt:YtF_Yt(), O§t§T7

whereF (x) = (K —x)* for some strikeK > 0. For the numerical simulation of the qgFBSBE
andY?, we apply the exponential transformation to both BSDE (seti@e6) and then employ
the algorithm by Bender and Denk (2007) wikh= 100 equidistant time points, 70000 paths
and a regression basis consisting of five monomials and theffdfanction of the put option.
The Picard iteration stops as soon as the difference of tweesjuent time zero values is less
than 10°°. Simulations reveal that 12 to 13 iterations are neededdiwirgy one exponentially
transformed qgFBSDE. Figures 2(a) and 2(b) depict the time @ece pg of the put option at
different strike and kerosene spot levels. The lower thestation, the lower the price becomes.
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320

T T T
— % - heating oil, ho=0.99
- =0~ ' heating oil, rho=0.93
300 [ —1l— kerosene

Price

Fig. 1 Price paths of the nontradable asset kerosene and the correlatethestsieg oil at different
correlation levels. The spot of kerosene was segte 170.

60 T T T
rho = 0.99

::: rho =0.97

-l -rho=095

[| = % =rho=0.93
——tho =

Price
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120 130 140 150 160 170 180 190 200 210 220 140 150 160 170 180 190 200 210 220 230 240
Strike Spot

(a) Put option price in terms varying strikes at a fixe(b) Put option price in terms of varying kerosene
kerosene spafy = 170. spots at a fixed strik& = 200.

Fig. 2 Values of the put option in terms of kerosene spot and strike for varginglations. High corre-
lations lead to high the prices for the contingent claim.

This is clear because lower correlations between heatirgndi kerosene lead to higher non-
hedgeable residual risk which diminishes the risk coveefigct of the contingent claim and
thus also its value. Figures 3(a) and 3(b) depict samplespaitthe dynamics for the pricg,
and the optimal investment strategyfor an at the money put with striké = 180 and kerosene
spotrg = 170. The plots depict price and monetary investment foryefa@urth time point of
the discretization. The price process and the dynamicseobgitimal investment strategy are
intertwined: high fluctuations of the price process resuhigh fluctuations of the investment
strategy and vice versa. In general we observe that rejolican high correlation levels tends
to entail greater market activity because kerosene préges can then be well hedged by mar-
ket transactions that move closely along the dynamics dfifigeail. In contrast, replication
on lower correlation levels leads to a higher amount of residisk which is inaccessible for
hedging and thus lower market activity is needed.
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(a) Dynamics of the price procegs for strike K = (b) Dynamics of the optimal investment strategy
180. for strikeK = 180.

Fig. 3 Paths of the pricgy; and the optimal investment strategy for varying correlation levels. In
general high correlations entail greater market activity.

Appendix 1 — Some results on BMO martingales

BMO martingales play a key role for a priori estimates neechedur sensitivity analysis of
solutions of BSDE. For details about this theory we refer gagler to Kazamaki (1994).

Let @ be aBMO(.7,Q) martingale with®y, = 0. @ being square integrable, the martingale
representation Theorem yields a square integrable prgressh thatd;, = fé @, t € [0, T].
Hence theBMO(.%#, Q) norm of @ can be alternatively expressed as

-

sup E@[/ cpfdsL%} < o,
T % —stopping time if0,T] T

Lemma 2 (Properties of BMO martingales).Let @ be a BMO martingale. Then we have:

1) The stochastic exponentiél @) is uniformly integrable.

2) There exists a numberx 1 such that8’(®r) € L". This property follows from thReverse
Holder inequality The maximal r with this property can be expressed expligitierms of
the BMO norm ofd.

3) If @ = [, @ds has BMO norm C, then for p 1 the following estimate holds

T p
B( [ lePds)’) < 2pi(ac?).
0
Hence BMOc s#P forall p > 1.

Appendix 2 — Basics of Malliavin’s calculus

We briefly introduce the main notation of the stochastic wale of variations also known as

Malliavin's calculus. For more details, we refer the reatteNualart (2006). Let be the
space of random variables of the form
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§=F ((/OT hg' WG )1<i<n, -+ (/OT hg’iWVsd)1§i5n)> )

whereF € CP(R™d), ht ... h" e L?([0,T];RY), n € N. To simplify notation, assume that all
hi are written as row vectors. Fére .7, we defineD = (DY,--- DY) : . — L2(Q x [0, T])¢

by
Dyé = zax” ([ haw.... [ eaw)rij, o<o<T 1<i<d

and fork € N its k-fold iteration by
Dk — (Dil e Dik)lgil,-u,ikgd-

Fork e N, p> 1 letDKP be the closure of” with respect to the norm

k
Hsuk,pzE[ufufp+izl|||o<k>ls|r|§’%p)i

DK is a closed linear operator on the sp@ZeP. Observe that if € D12 is .%-measurable
thenDgé = 0 for 6 € (t, T]. Further denot®*® = Np-.1DXP.

We also need Malliavin’s calculus for smooth stochasticpsses with values iR™. For
ke N,p> 1, denote byLy ,(R™) the set ofR™-valued progressively measurable processes
u=(ut,---,u™ on[0,T] x Q such that

i) For Lebesgue-a.a.c [0,T], u(t,-) € (D&P)™

i) [0,T] x Q > (t,w) — DWu(t,w) € (L2([0, T]+K))4*" admits a progressively measurable
version;

”I)HUHEDZ Hu”?fp + zg(zl H DiuHE%op)lJri < o

Note that Jensen’s inequality gives for pl> 2

T T b T
2 2 p/2—1 p
B[( [ ] IDoxdudt)’] < TP [ Do e

Appendix 3 — Some results on SDE

We recall results on SDE known from the literature that alevent for this work. We state our
assumptions in the multidimensional setting. However,elase of notation we present some
formulas in the one dimensional case.

Theorem 9 (Moment estimates for SDE)Assume that (HO) holds. Then (1) has a unique
solution X .72 and the following moment estimates hold: for any P there exists a constant
C > 0, depending only on T, K and p such that for ang R™ st € [0, T]

)

E[ sup |X[P) < CE[ P+ [ (Ib(t.0)[P+|o(t,0)")ct].
o<t<T 0

E[ sup [ Xy — xs|p]<c1E[|x|p+ sup{]th\p+|atO p}} _gP2

s<u<t
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Furthermore, given two different initial conditionsx € R™, we have

E| sup X~ X|P| <Clx—x/P.

0<t<T

Theorem 10 (Classical differentiability). Assume (H1) holds. Then the solution process X of
(1) as a function of the initial condition& R™ is differentiable and satisfies fort [0, T]

t t
0 0

where |, denotes the e m unit matrix. Moreover,1X; as an mx m-matrix is invertible for any
t € [0,T]. Its inverse(0X) ! satisfies an SDE and for any>p2 there are positive constants
Cp and g, such that

10X |0 + [ (OX) |0 < Cp
and

E[ sup |(0X) — (O%)|P+ sup |(0X) = (0%) 7P| < cplt—sIP/2

s<u<t s<u<t

Theorem 11 (Malliavin Differentiability). Under (H1), X< IL1 » and its Malliavin derivative
admits a versionju,t) — DyX; satisfying for0 <u <t <T the SDE

t t
u u
Moreover, for any p> 2 there is a constant > Osuch that for xx RMand0<v<u<t<s<T

IDuX %0 < Co(1+|XP),
E[|DyX — DuXs|?] < Cp(1+ |XP)[t 5|2,
IDuX — DyX||%p < Cp(1+[X{P)ju—vi%.

By Theorem 10, we have the representation

DuX = OX(0Xu) 10 (Xu) Lo (t), forallu,te[0,T].

Appendix 4 — Path regularity for Lipschitz FBSDE

We state a version of tHe?-regularity result for FBSDE satisfying a global Lipschitdition.
The result which was seen to be closely related to the coamesgof numerical schemes for
systems of FBSDE is due to Zhang (2001). For our FBSDE systen(q)Llve assume that
b,o, f,g are deterministic measurable functions that are Lipsauot#inuous with respect to
the spatial variables ar%}Hblder continuous with respect to time. Furthermore we asstinai

o satisfies (13). Then from El Karoui et al. (1997) one easiliamis existence and uniqueness
of a solution triple(X,Y,Z) of FBSDE (1), (2) belonging to”2 x .72 x 2. For a partitiont

of [0, T] define the procesg™ as in (15). Then the following result holds.
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Theorem 12 (Path regularity result of Zhang (2001))Let (X,Y,Z) € .72 x .72 x 72 be the
solution of FBSDE (1), (2) in the setting described aboveriltmere exists @ R such that
for any partitionrt= {to, - - - ,tn } of the time interval0, T| with mesh siz¢rn we have

o { sup B[N

ti

+T§LEU:“ 25— Zas] +’§Eu "

]Zs—Zti|2ds] <cin.
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