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Abstract

The paper examines the applicability of mathematical programming methods to
the simultaneous optimization of the structure and the operational parameters of a
combined-cycle-based cogeneration plant. The optimization problem is formulated as
a non-convex mixed-integer nonlinear problem (MINLP) and solved by the MINLP
solver LaGO. The algorithm generates a convex relaxation of the MINLP and ap-
plies a Branch and Cut algorithm to the relaxation. Numerical results for different
demands for electric power and process steam are discussed and a sensitivity analysis
is performed.

1 Introduction

The design of large-scale energy conversion systems is a highly complex process even when
only the steady-state case is considered. Design optimizations for new projects are of-
ten limited to sensitivity analyses of existing plants or application of heuristic rules [3–
5, 7, 10, 20, 26, 30]. The increasing computing power and the further development of opti-
mization algorithms in the last years allow now the application of novel computer-aided
tools [3,4,15–17,27]. This paper examines the applicability of mathematical programming
methods to the optimization of the design of a combined-cycle-based cogeneration plant.
The optimization is not only limited to operational parameters alone, but also searches for
an appropriate structure of the plant. The goal of the optimization is to find a plant design
with minimum levelized total cost that fulfills the user specified demands for electric power
and process steam.

The presence of integer variables (to model the structure of the plant) and nonlinear
equations (to model the thermodynamic behavior of the components), leads to a formu-
lation of the optimization problem as mixed-integer nonlinear program (MINLP). The
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discrete decisions and nonconvexity of some equations requires the application of sophisti-
cated global search methods since – due to the potential presence of several local optimal
solutions – traditional methods for convex optimization do not guarantee to find a global
optimal solution as well as a valid bound on the global optimal value. In this paper, the
MINLP solver LaGO (Lagrangian Global Optimizer) [23, 24] was used to optimize the
design of an energy conversion system.

In the next section, we introduce our model of a combined-cycle-based cogeneration
plant. Section 3 describes the solution algorithm that was applied here. Section 4 presents
some numerical results.

2 Optimization Problem

2.1 Combined-cycle based cogeneration plant

The energy conversion system analyzed here is based on a combined-cycle process, which
is a combination of a gas turbine process with a steam turbine process [3,5,18], see Figure
1 for a simple configuration. For cogeneration plants running in a stationary operation
mode, the entire fuel is generally fed to the gas turbine which represents the topping cycle
and produces about 2/3 of the electric power of the overall process. The energy of the gas
turbine exhaust gas is used within a heat recovery steam generator (HRSG) to produce
superheated steam. The steam is fed to a steam turbine to generate additional electric
power. Since the steam turbine process operates at a lower temperature level, it is called
the bottoming cycle. The combination of both processes working at different temperature
levels allows a very efficient utilization of the fuel energy. With an efficiency of up to 59%,
combined-cycle processes reach the highest efficiency for the production of electric power
from fossil fuels today. Looking at the environmental perspective, in addition to the high
efficiency, the use of natural gas as fuel contributes to relatively low specific CO2-emissions.

A combined-cycle process can easily be converted into a cogeneration plant, in which
process steam is produced in addition to electric power. The required steam is extracted
from the steam cycle, in general from a steam turbine stage, at an appropriate pressure.

2.2 Superstructure

The goal of the optimization is to find a design of the combined-cycle-based cogeneration
plant with minimum levelized total costs. Starting point for the simultaneous optimization
of the structure and the process variables of the design is a so-called superstructure. The
superstructure of the cogeneration plant represents a superior process flow sheet which
combines a variety of different plant designs. It contains all possible plant components,
necessary for accomplishing the predefined task, and all possible connections between them.
Depending on the user-specified electric power and process steam demands, the optimiza-
tion algorithm finds an optimized structure within the superstructure and the associated
values of the process variables. The superstructure was developed by combining various
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Figure 1: Schematic representation of a combined-cycle power plant with steam extraction

existing combined-cycle plant designs and considering all features that in our opinion have
the potential for improving the effectiveness of the overall plant. The superstructure was
designed for an electric power output between 50 MW and 400 MW and a process steam
production of up to a total of 500 t/h at up to three different pressure levels. A specific
design is determined by a set of 28 binary structural variables and 48 continuous pro-
cess variables. A structural variable decides over the existence of a plant component or
a stream connection whereas the process variables specify mass flow rates, temperatures,
and pressures of process streams as well as efficiencies of plant components.

A superstructure of the present complexity cannot be displayed concisely in one coher-
ent process flow sheet. Therefore, the superstructure is divided into three parts: the gas
turbine system, the water-steam-cycle, and the exhaust gas path. Figures 2, 3, and 4 show
the considered plant components (numbered from 501 to 533) and the process streams in
between them. The structural decisions are represented by dots, which mark either an
“and” decision or an “or” decision. In the following, they are discussed in more details.

2.2.1 Gas Turbine

Contrary to industrial standards, the gas turbine system is not a fixed system but is com-
posed of individual components to be designed, see Figure 2 for a process flow sheet. This
increases the flexibility for the optimization and allows the creation of innovative designs.
The first structural option determines whether intercooling with staged compression should
be included into the design or not. The intercooling can be realized by an injection cooler
(Component No. 503 in Figure 2) or by a surface heat exchanger (502). Before entering
the combustion chamber, the compressed air can be preheated in an air preheater (505).
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During the expansion process, reheating of the exhaust gas can be realized in a second
combustion chamber (508). The remaining structural variables for the gas turbine sys-
tem decide over fuel preheating (510) and a possible steam injection into each combustion
chamber. The streams at the bottom part of the flowsheet represent the cooling air for the
turbine blades. The exhaust gas stream is finally fed to the HRSG.
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Figure 2: Gas turbine part of the superstructure

2.2.2 Water/Steam Cycle

The water-steam-cycle consists of the water-side of the HRSG, the steam turbines, and the
condensing part including the feedwater tank. The flowsheet for the water/steam cycle is
shown in Figure 3. Steam can be produced at up to three different pressure levels (high,
medium, and low). The medium- and low-pressure levels are optional and their existence
is determined by structural variables. Each pressure level consists of a feedwater pump, an
economizer, an evaporator, and a superheater. The economizer of the low-pressure level
(522) and the superheaters of the low- and medium-pressure levels (520 and 517) represent
also structural decisions. The generated steam is expanded in up to three steam turbines
whereas the medium-pressure steam turbine and the associated reheater are optional. If
required, process steam can be extracted at four different locations (PD1 to PD4). After
the condensate pump, there is an option to implement a condensate reheater (523).
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Figure 3: Water-steam-cycle of the superstructure

2.2.3 Exhaust Gas Path

The exhaust gas path represents the gas-side of the HRSG. In Figure 4, every rectangle
denotes a surface heat exchanger. The structural variables determine the configuration of
the heat exchangers (order, in series, or in parallel). The path through the HRSG is, of
course, coupled to the existence of steam at the low- or medium-pressure levels. Finally,
there is an option to implement up to two duct burners (511, 513) into the HRSG.
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Figure 4: Exhaust gas path through the HRSG of the superstructure

2.3 Model of the superstructure

The model of the superstructure describes the thermodynamic behavior of the cogeneration
plant, performs the economic analysis and yields the levelized total costs for the overall
plant. The equations of the model can be divided into different categories. The first cate-
gory of equations describes the logic of the superstructure, i.e., how the plant components
are connected to each other, under which conditions the different setups are possible, and
which restrictions have to be fulfilled in each case.

The second category of equations consists of the models that specify the thermodynamic
behavior of the plant components. The models of the plant components should on one side
be kept as simple as possible, to facilitate the work of the optimization algorithm and to
shorten the total computing time. On the other side, they have to guarantee a certain level
of accuracy. The model of a plant component consists of mass and energy balances as well
as characteristic functions which describe the thermodynamic behavior of the component.

To simulate the behavior of the plant components, thermodynamic property equations
for all substances and mixtures used in the plant (e.g., exhaust gas, water, and steam) are
needed. The exhaust gas is treated as an ideal mixture of ideal gases and the properties
are calculated using the equations given in [19].

The third category of equations is formed by the functions approximating the purchase
equipment costs. These functions represent the most imprecise part of the model since
real cost data are hardly available. In this work we use cost functions either from the
literature [5, 31] or derived from available cost data [8, 13].

The last category of equations belongs to financial mathematics. With these equations
the economic analysis, which yields the levelized total costs for the cogeneration plant,
is conducted. The cost of the plant represents the total revenue which is required to
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maintain a sound economic operation of the plant. The total cost consists of investment
cost, operating and maintenance cost, fuel cost, depreciation, taxes, insurance, interests,
and a minimum return on investment. The economic analysis is performed according to
the Total Revenue Requirement (TRR) method [5]. The levelization of the costs takes the
time value of money into account.

The model for the MINLP solver LaGO is programmed as one coherent system of
equations using the mathematical modeling language GAMS [12]. Since the MINLP solver
requires first and second derivatives of the equations of the model, external software (e.g.,
for the simulation of single components of the plant) cannot be employed. The complexity
of the integrated nonlinear and nonconvex functions is limited to a certain degree to assure
the convergence of the solver. Therefore, for calculating the properties of water and steam
in LaGO, the IAPWS-IF 97 functions [32] with up to 60 terms and exponents of ±50 are
approximated by less complicated polynomials of lower degree.

Another restriction of the mathematical programming algorithm is that the designer
cannot determine a calculation sequence because the entire model is computed simulta-
neously. Here, distinction of cases can only be realized by additional binary variables,
which increase the complexity of the problem. Moreover, even though inactive parts of the
model have to be decoupled from the objective function, the equations of inactive plant
components have to be satisfied anyhow.

Modeling the overall plant performance with a system of equations has advantages in
conjunction with recirculated streams because there is no need for the designer to determine
a calculation order. Moreover, additional plant components can be easily integrated into
the model by connecting them with the upstream and downstream components.

Due to great differences in the order of magnitude of the variables, the entire model of
the superstructure has to be scaled to ensure an equal treatment by the solver regarding
the compliance of all equations. In addition, to facilitate the work of the solver and to
improve the quality of the results, upper and lower bounds for all variables of the model are
needed. This causes significant additional work for a model with 1308 variables and 1640
constraints. The optimization is controlled by the MINLP solver LaGO which accesses
the GAMS model of the superstructure, performs the optimization, and stores the best
solutions of a run in a data file for a subsequent analysis.

3 MINLP optimization by Branch and Cut

In this section we briefly describe the algorithm that is used to solve the design prob-
lem described in Section 2. The model can be formulated as the following mixed-integer
nonlinear program (MINLP):

min bT
0 x

such that h(x) ≤ 0,
x ∈ [x, x],
xj ∈ {0, 1} , j ∈ B,

(P)
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where B ⊆ {1, . . . , n}, c, x, x ∈ R
n, x ≤ x, and h : R

n → R
m is twice continuously

differentiable. Without loss of generality, we have assumed a linear objective function here
and replaced equality constraints by two inequalities in this general formulation.

If the function h(x) in (P) is convex, then the MINLP is denoted as convex MINLP.
There are mainly three approaches for the solution of convex MINLPs. In successive
outer-approximation algorithms [9, 11], a mixed-integer linear (MIP) relaxation of (P) is
constructed and successively improved by linearizing h(x) in several points. The optimal
value (or a lower bound on it) of this outer-approximation yields a valid lower bound for
the optimal value of (P). The relaxation is thereby solved by a MIP solver, which usually
employs a Branch and Cut algorithm. The optimal solution of the MIP relaxation further
serves as a starting point for a local search in the NLP that is obtained by fixing the
binary variables in (P) to the values in the solution of the MIP relaxation. Solutions that
are feasible in this NLP provide also feasible solutions for (P), and, hence, yield an upper
bound on the optimal value of (P). An extension of this outer-approximation algorithm
consists of integrating the construction of the outer-approximation into the Branch and
Cut algorithm that is used to solve the MIP relaxation [25]. This algorithm is especially
useful for models with a difficult combinatorial part. A third approach for solving convex
MINLPs is the replacement of the linear relaxation as used in a classical Branch and Bound
algorithm for MIPs by a nonlinear (continuous) relaxation [21]. This nonlinear relaxation
of (P) is obtained by relaxing the binary conditions on xj , j ∈ B, to bound constraints
xj ∈ [0, 1], j ∈ B. The solution of this NLP yields a lower bound on the optimal value
of (P). If, further, all variables xj , j ∈ B, take integral values, then also a feasible
solution for (P) (and thus an upper bound on the optimal value of (P)) has been found.
However, if some binary variables take fractional values in the NLP relaxation, then two
new subproblems are generated by fixing a single binary variables to 0 and 1, respectively
(branching). The algorithm is then applied recursively to this subproblem.

However, if h(x) is not convex, then these algorithms cannot be applied in a straight
forward manner, since linearizations of h(x) usually do not yield an outer-approximation
and the NLP solvers employed for solving NLP relaxations usually guarantees global op-
timal solutions only for convex problems. Therefore, for the global solution of noncon-
vex MINLPs, convexification techniques and spatial Branch and Bound algorithms are
employed. Convexification techniques [1, 29] generate linear or convex nonlinear underes-
timators of nonconvex functions, which can be utilized for the construction of linear or
convex nonlinear relaxations of (P). The tightness of an underestimator thereby depends
strongly on the bounds on the variables – as tighter the bounds as better is the underesti-
mator. Thus, subdividing a problem into subproblems with smaller ranges for a continuous
variable (that is involved in a nonconvex function) allows to tighten a convex relaxation.
This leads to spatial Branch and Bound algorithms as they are implemented in solvers like
BARON [28], Couenne [6], and LaGO [23,24].

In this paper, the Branch and Cut algorithm that is implemented in the MINLP solver
LaGO (Lagrangian Global Optimizer) was used to solve the model introduced in Section 2.
We assume to have procedures for evaluating function values, gradients, and Hessians of
the functions hi(x), i = 1, . . . , m. The restriction to black-box functions has the advantage
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that our algorithm can handle more general functions than other deterministic solvers for
nonconvex MINLPs. On the other hand, we are not able to use advanced convexification
and box reduction techniques (as in [22,29]). Hence, for some components of our algorithm,
e.g., Section 3.2.1, we are restricted to use less rigorous sampling methods.

The proposed algorithm follows a Branch and Bound scheme to search for a global
optimum of (P). It starts by considering the original problem with its complete feasible
region, which is called the root problem. A lower bound on the global optimum of (P) is
computed by solving a linear outer-approximation of (P). An upper bound v is computed
by finding a local optimum of (P). If the bounds match, a globally optimal solution has
been found and the procedure terminates. Otherwise, two new problems are constructed
by dividing the feasible region of (P) (branching). The new problems become “children”
of the root problem, and the algorithm is applied recursively on each subproblem. This
process constructs a tree of subproblems, the Branch and Bound tree.

The gap between the lower bound v(U) of a node U and the global upper bound v is
diminished by improving the linear outer-approximation and by computing local optimal
points. If such a point is found and the upper bound v is improved, nodes of the tree, the
lower bound of which exceeds v, are pruned. The process of branching and bounding is
performed until no unprocessed nodes are left or the gap has been sufficiently reduced.

The linear outer-approximation of (P) is based on a (nonlinear) convex outer-approxi-
mation (C). It is obtained by the following steps:

1. Check functions for block-separability, i.e., whether they can be written as a sum of
functions each depending only on a small number of variables, c.f. Section 3.1. Block-
separability is exploited by LaGO for the construction of relaxations and during box
reduction.

2. Identify convex and quadratic functions, c.f. Section 3.2.

3. Underestimate nonconvex nonquadratic functions by quadratic functions, c.f. Sec-
tion 3.2.1. This step is a preparation for the following convexification step.

4. Construct a convex relaxation (C) of (P) by taking all linear and convex nonlinear
constraints from (P) (as identified in Step 2). Add convex underestimators for all
remaining quadratic constraints (coming either directly from (P) or generated in
Step 3), c.f. Section 3.2.2.

5. Generate a linear outer-approximation (R[U ]) by linearizing the constraints of the
convex relaxation (C), c.f. Section 3.2.3.

The tightness of the convex underestimators for quadratic functions (Step 4) is deter-
mined by the ranges of the variables. Thus, to improve the efficiency of the algorithm,
box reduction techniques which aim on deducing reduced variable bounds from the set of
constraints and given variable bounds are applied. This allows to tighten the box [x, x] (or
a subbox) and can discover infeasibility of subproblems during branch-and-bound.

In the following, we briefly explain the above mentioned components of the algorithm.
For more details we refer to [24]. A list of symbols used in this section is given in Table 1.
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Table 1: List of Symbols

Optimization problems

(P) original MINLP
(Q) “pre-convex” relaxation, cf. Section 3.2.1
(C) the convex relaxation, cf. Section 3.2.2
(R) linear relaxation, cf. Section 3.2.3
(R[U ]) linear relaxation for a subbox U ⊆ [x, x], cf. Section 3.2.3
(Bj [U ]) auxiliary problem to compute bounds on variable xj , cf. Section 3.3

Problem formulation

b0 objective function coefficients, b0 ∈ R
n

h(x) constraint functions, h : R
n → R

m

x lower bounds on variables, x ∈ R
n

x upper bounds on variables, x ∈ R
n

[x, x] box of admissible variable values, [x, x] := {x ∈ R
n : xi ∈ [xi, xi], i = 1, . . . , n}

B indices of binary variables, B ⊆ {1, . . . , n}
xI subvector (xi)i∈I ∈ R

|I| for an index set I ⊆ {1, . . . , n}

Block-separable reformulation (cf. Section 3.1)

ci constant part of constraint i, ci ∈ R

bi coefficients of linear part of constraint i, bi ∈ R
n

Qi,k indices of variables in the k’th quadratic function block of constraint i
qi number of quadratic function blocks of constraint i
Ai,k coefficients of k’th quadratic function block of constraint i, Ai,k ∈ R

|Qi,k|×|Qi,k|

Ni,k indices of variables in the k’th nonlinear nonquadratic function block of con. i
hi,k k’th nonlinear nonquadratic function of constraint i, hi,k : R

|Ni,k| → R

pi number of nonlinear nonquadratic function blocks of constraint i

Convexification and Linearization

q(x) a quadratic underestimator, cf. Section 3.2.1
α convexification parameter of an α-underestimator, cf. Section 3.2.2

f̆(x) convex underestimator of a function f(x), cf. Section 3.2.2
X∗ points where convex functions are linearized, X∗ ⊂ [x, x], cf. Section 3.2.3

Branch and Cut (cf. Section 3.4)
x̂ reference point given as solution of (C) or (R), x̂ ∈ [x, x]
U list of open nodes in Branch and Bound tree
U node in Branch and Bound tree, identified with a subbox U ⊆ [x, x]
v̄ global upper bound on optimal value of (P)
v(U) lower bound on optimal value of (P) if restricted to subbox U
Xcand set of feasible (locally optimal) solutions found so far

10



Outer Approximation

Lower Bounds

Branch and Cut

Branching

Pre−convex

Convex Upper Bounds

(Q)

(C)

(R)
Box Reduction

Local

Optimization(User API)

GAMS

ReformulationModel  (P)

NLP Solver

B&B−Tree

Linear Cut Pool

Figure 5: Structure of the MINLP solver LaGO.

3.1 Block-separable reformulation

Many real-world optimization problems have a natural separable structure, which is often
related to components of the underlying model. This structure allows all functions of
(P) to be represented as a sum of sub-functions each one of which depends on a small
number of variables. Functions having such a property are called block-separable. For
the model of the cogeneration plant (Section 2), the sub-functions are the thermodynamic
equations for each component of the plant. Since each of them depends only on a small
number of variables, this model has a clear separable structure that can be exploited by
the optimization algorithm.

LaGO automatically identifies a block-separable structure of the black-box functions of
(P) and reformulates them as

hi(x) = ci + bT
i x +

qi∑

k=1

xT
Qi,k

Ai,kxQi,k
+

pi∑

k=1

hi,k(xNi,k
), (1)

where Qi,k and Ni,k are pairwise disjunct index sets (also denoted as block) of quadratic
and nonlinear nonquadratic variables that appear in hi(x). The block-separable structure
allows to distinguish between quadratic and nonquadratic parts of a function, and to treat
each block separately if advantageous.

Furthermore, the sparsity graph Esparse
i of the Hessian for each function is computed.

This graph has the set Vi :=
⋃qi

k=1 Qi,k

⋃pi

k=1 Ni,k of nonlinear variables as nodes and there
is an edge between nodes j and j′ if there is a point x̂ ∈ [x, x] such that (∇2hi(x̂))j,j′ 6= 0,
i.e., the variables xj and xj′ are coupled in hi(x).
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The set Vi is provided by the GAMS interface. To partition it into sets of quadratic
(Qi,k) and nonquadratic variables (Ni,k) and for determining the sparsity graph Esparse

i ,
the Hessian of hi(x) is evaluated at sample points. Nonzero entries in the Hessian yield
an edge in the sparsity graph, and constant columns in the Hessian indicate quadratic
variables. Since we only need the information whether entries of the Hessian are constant
and nonzero, but not the actual values, this sampling approach yields correct results for
functions that are common in practical applications.

3.2 Relaxations

We now describe the steps which lead to a polyhedral relaxation of problem (P).
First, for each function hi,k(xNi,k

) and xT
Qi,k

Ai,kxQi,k
(cf. (1)) it is determined whether it

is convex over [x, x]. For a function hi,k(xNi,k
) the minimal eigenvalue of ∇2hi,k is evaluated

at sample points. Observe that only the sign of the eigenvalue is of interest, so that even
for curvaceous functions a sufficiently rich set of sampling points yields correct results. For
a quadratic form xT

Qi,k
Ai,kxQi,k

it suffices to compute the minimal eigenvalue of Ai,k.
Next, convex underestimators are constructed in a two-step approach. In the first

step, nonconvex functions hi,k(xNi,k
) are underestimated by (possibly nonconvex) quadratic

functions. In the second step, quadratic nonconvex functions are replaced by convex
α-underestimators as introduced in [2]. Even though the direct application of the α-
underestimator technique to the original function would result in a convex underestimator,
the proposed quadratic underestimator is often tighter because the α-convexification de-
pends only on the curvature of the function and not on the function behavior, cf. Figure 6.

q

q

f

f

Figure 6: α-underestimator f̆ of f versus the convexification q̆ of the quadratic underesti-
mator q of f .

Finally, the functions of the convex relaxation are linearized to obtain a polyhedral
outer-approximation.
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3.2.1 Quadratic underestimators

A quadratic underestimator
q(x) = xT Ax + bT x + c

of a nonconvex function f : R
r → R over a box [x, x] is constructed by solving the following

linear program in the variables A, b, and c:

min
A,b,c

∑

x∈S

f(x) − q(x)

such that q(x) ≤ f(x), x ∈ S,
(2)

where S is a sample set of points from [x, x]. Thereby, the sparsity pattern of A and b
are chosen according to that of f , i.e., the matrix A and the Hessian ∇2f , and the vector
b and the gradient ∇f , respectively, have the same zero entries. Information about the
“shape” of the function f(x) is inherited to q(x) by minimizing additionally the distances
of the gradient and Hessian between f(x) and q(x) in some of the sample points.

This method requires only function evaluations, and can thus be applied to black-box
functions for which no analytic expressions are known. The quality of the quadratic un-
derestimator depends thereby strongly on the sample set S. In our numerical experiments,
the choice S = vert([x, x])∪{xmin, (x+x)/2}∪M , where vert([x, x]) are the vertices of the
box [x, x], xmin is a local minimizer of f(x), and M a set of randomly generated points,
led to robust results. Note, that in practical applications such as the cogeneration plant
presented in Section 2, the nonconvex functions hi,k(xNi,k

) depend on rather small sets Ni,k

of variables and hence allow for a sufficiently large sample set S while keeping the linear
program (2) still efficiently solvable.

The relaxation (Q) of (P) is obtained by replacing nonconvex functions hi,k(xNi,k
) by

quadratic underestimators q(xNi,k
) computed by means of (2). Finally, the binary condi-

tions on the variables xB are dropped.

3.2.2 Convex relaxation

The relaxation (C) of (Q) is obtained by replacing nonconvex quadratic forms in (Q) by
α-underestimators as introduced by Adjiman and Floudas [2]. An α-underestimator of a
quadratic form f(x) = xT Ax + bT x + c (for x ∈r) is the function

f̆(x) = f(x) + αT Diag(x − x)(x − x)

where Diag(·) denotes a diagonal matrix and the parameter α ∈r is computed according
to α = max{0,−λ1(Diag(w)A Diag(w))}Diag(w)−2e, where e ∈r is the vector of ones,
w = x − x, and λ1(·) denotes the minimum eigenvalue of a matrix. It is clear that f̆ is
convex and f̆(x) ≤ f(x) for all x ∈ [x, x]. The convex relaxation takes now the form

min bT
0 x

such that h̆(x) ≤ 0,
x ∈ [x, x],

(C)

where h̆i(x) ≡ hi(x) if the function hi(x) is convex in (Q).
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3.2.3 Linear relaxation

The linear relaxation (R) of (P) is generated by linearization of the nonconvex functions
h̆i(x) in (C) in an optimal point of (C). In the Branch and Cut algorithm, (R) is augmented
by further linearizations in local optimal points of (P).

For a box U ⊆ [x, x], we denote by (R[U ]) the linear relaxation where the variables are
restricted to take values in U ,

min bT
0 x

such that h̆i(x) ≤ 0, i ∈ {1, . . . , m} with h̆i linear,

h̆i(x
∗) + ∇h̆i(x

∗)(x − x∗) ≤ 0, x∗ ∈ X∗, i ∈ {1, . . . , m} with h̆i nonlinear,
x ∈ U,

(R[U ])
where X∗ is a set of local optimal points of (P) or (C).

3.3 Box reduction

In practice, the bounding box [x, x] of a given MINLP can be large, which can result in
convex underestimators and cuts of bad quality. This drawback might be prevented if a
box reduction procedure is applied in the preprocessing. Also during the Branch and Cut
algorithm, a branching operation might facilitate possible reductions of variable bounds,
and even detect infeasibility for a subregion or fix binary variables. Two box reduction
techniques are currently implemented in LaGO.

The first method utilizes the whole set of constraints of the linear relaxation (R) at
once by enclosing the feasible set of the linear relaxation with a new maybe smaller box.
The feasible set is thereby further restricted by a level cut that cuts off all points for which
the objective function value exceeds the incumbent upper bound v̄ on the optimal value
of (P). Formally, for a box U ⊆ [x, x], a new lower (upper) bound on a variable xj is
computed by solving

min (max) xj

such that h̆i(x) ≤ 0, if h̆i is linear,

h̆i(x
∗) + ∇h̆i(x

∗)(x − x∗) ≤ 0, x∗ ∈ X∗, if h̆i is nonlinear,
bT
0 x ≤ v, i ∈ {1, . . . , m}

x ∈ U.

(Bj[U ])

This procedure is illustrated in Figure 7. If problem (Bj [U ]) is infeasible, then there exists
no point in U with a better optimal value than the incumbent upper bound. Hence, the
subregion U does not need further investigation. Solving (Bj[U ]) for all variables can be
costly, and thus should only be carried out for variables which seem promising for a box
reduction, cf. [24].

The second box reduction method is a simple constraint propagation method [22]. It
applies interval arithmetic techniques to the constraints of the original formulation (P).
Hence, it does not depend on the quality of the relaxation (R[U ]), but handles only one
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Figure 7: Box reduction using the feasible set of the linear relaxation

constraint at a time. Let hi(x) = g(x) + cjxj for cj 6= 0. For a box U ⊆ [x, x] we denote
by g(U) an interval such that g(x) ∈ g(U) for all x ∈ U . Then let [bj , bj ] = −g(U)/cj . If

cj > 0, then the upper bound on xj can be updated to min(xj , bj), and if cj < 0, then the
lower bound of xj can be updated to max(xj, bj). Furthermore, if xj is a binary variable,
i.e., j ∈ B, and one of its bounds was reduced, then xj can be fixed. In case that the new
variable bounds define an empty box, infeasibility of a subproblem with box U is detected.

After reducing the box of one variable xj , other constraints that depend on xj might
yield further box reductions. The implementation keeps track of these dependencies and
selects variables and constraints for further consideration until the box is not (significantly)
reduced anymore, cf. [24].

3.4 Branch and Cut algorithm

The Branch and Cut algorithm for solving problem (P) is shown in the algorithm presented
in Algorithm 1. It computes the set Xcand of local optimizers.

If the lower bounds v(U) are correct and tight, the algorithm converges to a global
optimum of (P). However, LaGO currently does not update the relaxations (Q) and (C)
after a branching operation, so that the relaxations (Q), (C), and (R) might not be tight
and convergence to a global optimum cannot be ensured. For this reason, we decided to
branch on binary variables only, i.e., when a subproblem is considered in which all binary
variables are fixed, it is discarded, even when the gap between lower and upper bound is
not closed. Another problem arises if the quadratic underestimator of a function hi,k(xNi,k

)
is not rigorous and a wrong lower bound leads to a mistaken pruning of a node. Because
of these two reasons, the proposed algorithm can be seen as a heuristic only.
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Reformulate all functions into form (1) and get the sparsity graphs.
Box reduction by interval arithmetic and by enclosing the polyhedron defined by the
linear constraints in (P) (if any).
Determine which of the functions hi,k(xNi,k

) and xT
Qi,k

AxQi,k
are convex.

Construct the pre-convex relaxation (Q).
Construct and solve the convex relaxation (C). Let x∗ be a solution point of (C).
Construct the linear relaxation (R) using X∗ = {x∗}.
Box reduction by solving (Bj[U ]) with U = [x, x] and by interval arithmetic.
Initialize the Branch and Bound tree U with node [x, x]. Set v = ∞, Xcand = ∅.
Set v([x, x]) to the optimal value of (C) and x̂[x,x] to the solution point x∗ of (C).
repeat

Take node U from U with v(U) minimal.
if U ∩ Xcand = ∅ then {Update upper bound}

Start local search from x̂ (with rounded binary variables) in (P) where the binary
variables are fixed.
if a new local minimizer x∗ of (P) is found then

Update Xcand, v.
Add cuts to (R) by adding x∗ to the set X∗.

end if
Solve (R[U ]). Update v(U) and x̂U .

end if
if v(U) < v and not all binary variables are fixed in U then

Let j ∈ B be such that min((x̂U)j, 1 − (x̂U)j) is maximized over all j ∈ B.
for t = 0, 1 do {Branching at variable j}

Let Ut := {x ∈ U |xj = t}.
repeat

Box reduction by interval arithmetic and by solving (Bj [Ut]).
until Ut is not reduced significantly or infeasibility is detected
if infeasibility was not detected then

Solve (R[Ut]), update v(Ut), and let x̂Ut
be a minimizer of (R[Ut]).

Put Ut into U .
end if

end for
end if
Prune U by deleting U ∈ U with v(U) ≥ v.

until U = ∅ or the gap v − minU∈U v(U) is small enough

Algorithm 1: Branch and Cut Algorithm

4 Results and Discussion

To examine the applicability of the optimization method (Section 3) on the presented
model (Section 2) and to investigate the flexibility of the algorithm, optimization runs
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for four different cases of electric power and process steam demand were performed. The
objective was to find a design of the cogeneration plant with minimum levelized total costs
that fulfills the specified requirements.

Due to the complexity of the model, a preprocessing has to be applied for the local
optimization step of the algorithm. In the preprocessing, the model is split up and initially,
a part of it is solved. In the second step, the result of the first step is taken into account
to compute a locally optimal solution for the complete model. For an optimization run,
30000 iterations of the Branch-and-Bound algorithm were performed. Within LaGO, the
LPs are solved by CPLEX 9.0 [14] and the local search is done by CONOPT 3.14P [12].

In the discussion of the results, no values of the 76 decision variables are presented
for reasons of simplicity. Instead, the structure of the resulting cogeneration plant for
the respective case is explained briefly. In addition, the most important parameters are
presented in Table 2: total electric power output Ẇtotal, thermal efficiency ηth (representing
the sum of electric and thermal output in relation to the fuel input), and total levelized
costs TRRlev (representing the levelized hourly cost of the plant throughout its lifetime).
The efficiency values are based on the lower heating value of the fuel.

4.1 Case 1: single electric power output of 300 MW

In the first case, a design for pure power generation with a capacity of 300 MW is stud-
ied. This case represents a relatively simple case because no process steam extraction
has to be considered and the power demand is in the middle of the capacity range of the
superstructure. The design produced by LaGO consists of a simple gas turbine without
intercooling, air preheater, or sequential combustion. The bottoming cycle is designed
as a two-pressure-level process with reheating after the high-pressure part of the steam
turbine. The characteristic parameters of the design can be found in the first column of
Table 2. The thermal efficiency of almost 57% is in line with the efficiencies of existing
combined-cycle power plants at this capacity range. Since electricity is the only product of
the plant, the levelized total cost of 12674 €/h can easily be converted into the levelized
cost of electricity (for 8000 hours of yearly operation) and results in a value of about 4.2
Eurocent/kWh. Compared to the electricity costs of today’s combined-cycle power plants
and taking the future escalation of the fuel price into account, these results are realistic.

4.2 Case 2: single electric power output of 400 MW

For the second case, the required electric power output of 400 MW reaches the upper
bound of the capacity of the superstructure. Looking at characteristic parameters in the
second column of Table 2, it can be seen that the thermal efficiency almost reaches 59%,
which corresponds to the thermal efficiency of today’s large-scale combined-cycle power
plants. The design consists of a simple gas turbine as topping cycle and a three-pressure
level steam cycle including a reheater as bottoming cycle. The more complex structure of
the steam cycle leads to an increased efficiency compared to the first case. The costs of
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electricity amount again to about 4.2 Eurocent/kWh. As in the first case, the gas turbine
generates around two-thirds of the total electric power output.

4.3 Case 3: electric power output of 90 MW and process steam
extraction of 99.5 t/h

The third case introduces process steam extraction into the design. The specifications of
90 MW electric power generation and process steam extraction of 99.5 t/h at a pressure
level of 4.5 bar represent the demand of an existing paper factory. The design of the
cogeneration plant consists of a simple gas turbine and a two-pressure steam cycle. Here, a
reheating of the medium-pressure steam is not implemented resulting in a lower efficiency
of the steam cycle. Compared to the first and second cases, the percentage of electric
power contributed by the steam cycle is much lower which is a result of the high amount
of steam extracted from the steam cycle. Since steam can be produced with a much higher
energetic efficiency than electricity, the overall thermal efficiency of the design outperforms
clearly the cases with pure electric power generation.

4.4 Case 4: electric power output of 290 MW and process steam

extraction of 150 t/h at different pressure levels

The fourth case represents again a cogeneration plant but with maximum exploitation of
the complexity of the superstructure. Therefore, process steam extraction at three different
pressure levels (40 t/h at 50 bar, 40 t/h at 15 bar, and 70 t/h at 3.5 bar) and an electric
power output of 290 MW is required. The resulting design consists of a simple gas turbine
and a three-pressure-level steam cycle including a reheater. The power-to-steam ratio is
higher than in the third case which results in a lower overall thermal efficiency but in a
more complex structure of the steam cycle.

Table 2: Results from the cases considered in the optimization of the superstructure for
different demands for electric power and process steam.

Case 1 Case 2 Case 3 Case 4

Ẇtotal [MW] 300 400 90 290
ηth [%] 56.72 58.59 77.19 68.45
TRRlev [€/h] 12674 16771 5022 13424

4.5 Sensitivity Analysis

A sensitivity analysis examines the influence of certain parameters, which are usually kept
constant during an optimization run, on the result of the optimization. These parameters
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describe technical limits of plant components or are estimates of uncertain future economic
developments. Knowledge of the effects of such parameters on the resulting design and on
the associated costs is very valuable for the design engineer. Among the many possible
parameters, the effect of the fuel price, the rate of increase of the fuel price, and the number
of planned operating hours are chosen to demonstrate the sensitivity analysis performed
with LaGO.

For the base case 1, the price of natural gas is set to 4 €/GJ. In the sensitivity analysis
this price is changed to 3.5 €/GJ (representing a lower limit), and to 4.5 €/GJ (represent-
ing a higher limit). The specified capacity for the power plant remains equal to 300 MW.
To examine the influence of the fuel price, optimization runs with fuel prices of 3.5 €/GJ,
4 €/GJ, and 4.5 €/GJ are performed. The levelized total costs of the three resulting de-
signs are then calculated with the three different values of the fuel price and are shown in
Table 3. For example, the levelized total costs displayed in line 1 of column 3 of this table
result from a design which was optimized for a fuel price of 4.5 €/GJ but here is calculated
with a fuel price of 3.5 €/GJ. If the fuel price would have a noticeable influence on the
optimization, the design which is calculated with the fuel price for which it is optimized
should always yield the lowest costs.

In Table 3, noticeable differences in costs can only be seen between the optimization
runs for a fuel price of 3.5 €/GJ and a fuel price of 4.5 €/GJ. For a fuel price of 3.5 €/GJ,
the levelized costs for the plant which is optimized for this fuel price are 25 €/h less than
if it is optimized for 4.5 €/GJ. In contrast, for a fuel price of 4.5 €/GJ, the levelized
costs of the plant are 27 €/GJ less if it is optimized for this price compared to the design
optimized for 3.5 €/GJ. Thus, the value of the fuel price clearly influences the resulting
design of the cogeneration plant.

Table 3: Effect of the fuel price on the resulting designs showing the TRRlev in €/h

Values calcu- Design optimized for
lated with 3.5 €/GJ 4.0 €/GJ 4.5 €/GJ
3.5 €/GJ 11436 11441 11461
4.0 €/GJ 12678 12674 12677
4.5 €/GJ 13921 13907 13894

To analyse the effect of the rate of increase of the fuel price, the same investigation is
performed. In addition to the base rate of 1.0%, the values of 0.5% and 1.5% are considered.
Table 4 shows the results of the calculations. Looking at the values of the levelized total
costs no noticeable tendency can be observed. Taking into account the large percentage
of variation for this parameter during the analysis, it can be concluded that the rate of
increase of the fuel price has no significant influence on the optimization.

The last parameter under investigation is the average number of annual operating hours
the plant is designed for. They are varied between 8000, 7000, 5000, and 4000 hours. The
results are presented in Table 5. It can be seen that the design which is calculated with the

19



Table 4: Effect of the rate of increase of the fuel price on the resulting designs showing the
TRRlev in €/h

Values calcu- Design optimized for
lated with 0.5% 1.0% 1.5 %
0.5 % 12290 12296 12287
1.0 % 12667 12674 12661
1.5 % 13467 13477 13455

number of operation hours for which it is optimized always yields the lowest cost. Moreover,
the greater the difference to the number of hours the plant is optimized for becomes, the
higher the total levelized costs are. Here, the influence of the yearly operation hours on
the optimization results is clearly evident.

Table 5: Effect of the number of annual operation hours on the resulting designs showing
the TRRlev in €/h

Values calcu- Design optimized for
lated with 4000 h 5000 h 7000 h 8000 h
4000 h 15233 15253 15368 15439
5000 h 14268 14248 14292 14333
7000 h 13167 13101 13062 13069
8000 h 12823 12742 12668 12664

4.6 Discussion

The various optimizations performed with LaGO produce reasonable results in all cases.
The thermal efficiencies and the levelized total costs of the resulting designs are within the
range of existing combined-cycle power plants of the corresponding capacity. This proves
the applicability and functionality of LaGO as well as the plausibility of the model of the
superstructure. The sensitivity analysis also produces reasonable and useful results and
shows the flexibility of the optimization algorithm.

From the energy engineering point of view the results allow some interpretations in
regard to the design of combined-cycle power plants. All investigated cases show a great
unity in the gas turbine design which goes in line with the structure of industrial heavy
duty gas turbines installed in large commercial CCPPs. The gas turbine system is always
a simple cycle with a pressure ratio of around 18. Differences between the several cases
can mainly be found in the steam cycle design. For electricity generation only, the fuel
savings due to the efficiency increase outweigh the investment costs in additional or more
efficient plant components and result in a greater complexity of the steam cycle. In the
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case of significant process steam extraction, the complexity of the steam cycle is not a
crucial factor anymore and leads to simpler designs.

5 Conclusions

A superstructure of a combined-cycle-based cogeneration plant was developed and opti-
mized. The model allows the simultaneous optimization of the operational parameters
and the structure of the plant. The resulting nonconvex mixed-integer nonlinear problem
(MINLP) is solved by LaGO. The solver generates a convex relaxation of the MINLP and
applies a Branch and Cut algorithm to the convex relaxation.

Various optimization runs with different requirements for the electric power and process
steam demand as well as sensitivity analyses for different parameters were performed. The
optimization tool produces reasonable results for all cases which proves its applicability
and functionality.

Regarding the design of combined-cycle-based cogeneration plants, the results show
that the focus should be set on the configuration of the steam cycle. Moreover, the option
of process steam extraction has to be taken into account and decides over the complexity of
the design. The fact that only fixed gas turbine systems are available on the market is not
a disadvantage because all designs obtained contain the same simple gas turbine process.
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