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Abstract. We provide lower estimates for the norm of gradients of Gauss-

ian distribution functions and apply the results obtained to a special class of
probabilistically constrained optimization problems. In particular, it is shown

how the precision of computing gradients in such problems can be controlled

by the precision of function values for Gaussian distribution functions. More-
over, a sensitivity result for optimal values with respect to perturbations of the

underlying random vector is derived. It is shown that the so-called maximal

increasing slope of the optimal value with respect to the Kolmogorov distance
between original and perturbed distribution can be estimated explicitly from

the input data of the problem.

1. Introduction. Optimization problems with probabilistic constraints play an
important role in engineering and operations research when decisions have to be
taken under uncertainty affecting the given system of constraints. A typical class
of such problems is given in the form

min
{
cTx|P (Ax ≥ ξ) ≥ p

}
. (1)

Here, x ∈ Rn is a decision vector whose linear costs cTx are to be minimized subject
to a probabilistic constraint. In this constraint, ξ is some s-dimensional random
vector defined on a probability space (Ω,A,P) and A is a matrix of order (s, n). In
most cases, decisions x have to be taken before realizations of the random vector
ξ are observed. Then, the random inequality system Ax ≥ ξ cannot serve as a
constraint for a well defined optimization problem: whatever decision x is taken,
it may turn out to be unfeasible under a future realization of ξ (in particular for
unbounded distributions). Therefore, it is reasonable to declare x to be feasible
if the random constraint Ax ≥ ξ is satisfied under x at a probability not smaller
than a given level p ∈ [0, 1]. For introductory texts on probabilistically constrained
optimization problems and their applications we refer to the monographs [14, 15, 17].
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2 RENÉ HENRION

For the numerical solution of (1) but also for theoretical issues like structure and
stability it is essential not only to be able to calculate the probability function

x 7→ P (Ax ≥ ξ) (2)

but also its gradient. Note that, using the cumulative distribution function of ξ
defined as Fξ(y) := P (y ≥ ξ) one may rewrite (2) as the function Fξ(Ax), thus
giving problem (1) the equivalent form

min
{
cTx|Fξ(Ax) ≥ p

}
. (3)

Evidently, for calculating values and gradients of Fξ(Ax) it is sufficient to be able
to calculate values and gradients of Fξ. As far as values are concerned, this can
be done in moderate dimension s at fairly satisfactroy precision for many promi-
nent multivariate distributions, e.g. Gaussian, t-, Dirichlet, Gamma or Exponential
dstribution (see, e.g., [1, 5, 12, 19, 20]). As far as gradients are concerned, several
approaches have been proposed which allow, based on certain representations as
surface or volume integrals, to approximate partial derivatives of probability func-
tions via Monte Carlo and related techniques (e.g., [4, 11, 13, 21]). For a few special
distributions (like Gaussian or Dirichlet) it is possible to establish an explicit rela-
tion between partial derivatives and function values of Fξ by means of an analytical
formula. One may benefit from such comfortable situation in several respects:

• The same algorithm providing (approximate) values of Fξ can be employed
for calculating (approximate) values of ∇Fξ.

• Higher order derivatives of Fξ can be obtained as well by recursively reducing
their computation in an exact way to the computation of values of Fξ.

• The precision of ∇Fξ (and of higher order derivatives) can be controlled by
that of Fξ itself.

The purpose of this paper is to show for the multivariate Gaussian distribution, how
such reduction formula can be employed in order to estimate (independent of the
concrete argument) the precision of ∇Fξ by that of Fξ (Section 3) and, moreover,
in order to derive sensitivity estimates for optimal values to problem (3) when
perturbing the underlying distribution (Section 4). The latter issue is of interest,
for instance, when replacing the theoretical, typically unknown distribution of ξ
by some empirical approximation). Both topics to be addresses rely essentially on
the derivation of lower estimates for the norm of gradients of Gaussian distribution
functions (Section 2).

The notation used is standard. ‖·‖ and ‖·‖∞ denote the Euclidean and the
maximum norm, respectively. The symbol ξ ∼ N (µ,Σ) expresses the fact that the
random vector ξ has a multivariate Gaussian distribution with mean vector µ and
covariance matrix Σ.

2. Lower estimates for the norm of gradients of Gaussian distribution
functions. We commence this section by recalling a well-known gradient formula
for Gaussian distribution functions. Without loss of generality, we may confine
ourselves to the case of standard Gaussian distributions, i.e., where the mean vector
equals zero and all variances (diagonal elements of the covariance matrix) are equal
to one. Indeed, due to well-known transformation laws for Gaussian distributions,
a general Gaussian distribution function Fξ with ξ ∼ N (µ,Σ), as it occurs, for
instance, in (3), can be rewritten as

Fξ(y) = ΦR
(
D−1/2 (y − µ)

)
, (4)
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where ΦR is the distribution function of random vector distributed according to
N (0, R), with R being the correlation matrix associated with Σ. Moreover, D
denotes the diagonal part of Σ (i.e., D is the diagonal matrix composed of the
variances of ξ). As a consequence, the probabilistically constrained optimization
problem (1) can be equivalently rewriten via (3) and (4) as

min
{
cTx|ΦR

(
D−1/2 (Ax− µ)

)
≥ p
}
. (5)

In the present and in the following section, we shall assume our original problem (1)
to be given in the form of (5). Consequently, in the vein of the previous discussion,
the whole interest focusses on the gradient ∇ΦR of standard normal distribution
functions.

For these reasons, let now ΦR be the distribution function of an s-dimensional
Gaussian random vector distributed according to N (0, R), with R = (ri,j)

s
i,j=1 and

ri,i = 1 for i = 1, . . . , s. It is well known (see, e.g., [14], p.204) that ΦR is a smooth
function and that its partial derivatives calculate as

∂ΦR

∂zi
(z) = f(zi)Φ

R̃(i)
(
z̃(i)
)

i = 1, . . . , s, (6)

where f is the density of the 1-dimensional standard Gaussian distribution,

z̃(i) =

z1 − r1,izi√
1− r2

1,i

, · · · , zi−1 − ri−1,izi√
1− r2

i−1,i

,
zi+1 − ri+1,izi√

1− r2
i+1,i

, · · · , zs − rs,izi√
1− r2

s,i

 (7)

and the correlation matrix R̃(i) of order (s− 1, s− 1) has entries

r̃
(i)
j,k =

rj′,k′ − rj′,irk′,i√
1− r2

j′,i

√
1− r2

k′,i

i = 1, . . . , s; j, k = 1, . . . , s− 1 (8)

with

j′ :=

{
j if j < i

j + 1 if j ≥ i , k′ :=

{
k if k < i

k + 1 if k ≥ i .

In the numerical solution of chance-constrained optimization problems, for instance
when applying a supporting hyperplane method as in [18], one has to calculate gra-
dients ∇ΦR (z) at arguments z satisfying ΦR (z) = p where p ∈ [0, 1] is some given
probability level typically close to 1. Formula (6) permits an analytical reduction of
gradients of Gaussian distribution functions to function values of the same type of
distribution functions albeit with different parameters. As mentioned in the intro-
duction, this fact has important consequences for numerics and sensitivity analysis
in probabilistically constrained optimization problems. In this section, as a prepa-
ration of the following ones, we are interested in lower estimates for the norm of
gradients of Gaussian distribution functions based on formula (6). More precisely,
we are interested in estimates that depend only on the data (R,p,s) of the problem
but not on the specific argument z satisfying ΦR (z) = p . Let us consider first the
simple case of independently distributed components, i.e., R = Is:

Proposition 2.1. Let p ≥ 0.5 and consider any point z such that ΦIs (z) = p.
Then, ∥∥∇ΦIs (z)

∥∥
∞ ≥ f(qp1/s) · p1−1/s,

where f and qα denote the density and the α-quantile of the 1-dimensional standard
Gaussian distribution, respectively.
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Proof. With R = Is one derives from (8) that R̃(i) = Is−1 for all i = 1, . . . , s.
Similarly, (7) yields that

z̃(i) = (z1, . . . , zi−1, zi+1, . . . , zs) i = 1, . . . , s.

Denoting by F the cumulative 1-dimensional standard Gaussian distribution func-
tion, it follows that, for all i = 1, . . . , s,

ΦR̃
(i)
(
z̃(i)
)

= ΦIs−1 (z1, . . . , zi−1, zi+1, . . . , zs) =

s∏
j=1,j 6=i

F (zj)

= ΦIs (z) /F (zi) = p/F (zi).

As this estimate holds true for all i = 1, . . . , s, we get from (8) that∥∥∇ΦR (z)
∥∥
∞ = max

i=1,...,s
f(zi)Φ

R̃(i)
(
z̃(i)
)

= p max
i=1,...,s

f(zi)

F (zi)
. (9)

Since F is increasing as a distribution function and f is decreasing for p ≥ 0.5, one
derives that f/F is decreasing. Therefore,∥∥∇ΦR (z)

∥∥
∞ = p

f (τ)

F (τ)
with τ := min

i=1,...,s
zi.

We claim that τ ≤ qp1/s . Indeed, otherwise zi > qp1/s for all i = 1, . . . , s, whence
the contradiction

p = ΦIs (z) =

s∏
i=1

F (zi) >

s∏
i=1

F
(
qp1/s

)
=

s∏
i=1

p1/s = p.

Now, exploiting once more the fact that f/F is decreasing, we arrive at the desired
lower estimate ∥∥∇ΦR (z)

∥∥
∞ ≥ p

f
(
qp1/s

)
F
(
qp1/s

) = f(qp1/s) · p1−1/s.

The correlated case is less obvious and meaningful lower estimates for the pre-
cision of the gradient depending only on the data (R,p,s) seem to be very hard
to derive for general correlation matrices. In the following, we identify a special
class of correlation matrices for which such estimates are possible. To this aim, we
associate with each correlation matrix R the parameter

∆(R) := ρmin − ρ1ρ2,

where ρ1, ρ2, ρmin denote the largest, second largest and smallest nondiagonal ele-
ments of R.

Definition 2.2. A correlation matrix is called amenable if ∆(R) ≥ 0.

We give examples for two subclasses of amenable correlation matrices:

Example 2.3. Let t ∈ [0, 1] be arbitrary. Assume that all nondiagonal entries of
R lie in the interval

[
t2, t

]
. Then, R is amenable. Indeed, by assumption, ρmin ≥ t2

and ρ1, ρ2 ≤ t, whence ∆(R) ≥ 0. For example, R is amenable if all nondiagonal
correlation coefficients lie between 0.25 and 0.5.
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Example 2.4. Assume that all or all but one nondiagonal entries of R are constant
and nonnegative. Then, R is amenable. Indeed, by assumption, ρmin = ρ2, whence
∆(R) = ρ2 (1− ρ1) ≥ 0. For example, R is amenable if one nondiagonal correlation
coefficient equals 0.9 while all the others are equal to 0.1.

Proposition 2.5. If R is amenable and positive definite, then R ≥ 0.

Proof. If not R ≥ 0, then ρmin < 0. Assuming that ρ1, ρ2 have a common sign, one
arrives at the contradiction ∆(R) < 0. Otherwise, it follows that

1 > ρ1 > 0 > ρ2 ≥ ρmin,

where the first strict inequality relies on the fact that a correlation matrix cannot
be positive definite if it contains an off-diagonal element equal to 1. From this chain
of inequalities, we derive again the contradiction

∆(R) = ρmin − ρ1ρ2 < ρmin − ρ2 ≤ 0.

The technical meaning of amenability is clarified in the following result:

Lemma 2.6. If R is an amenable, positive definite correlation matrix of order
(s, s), then R̃(i) ≥ Is−1 (componentwise) holds true for the correlation matrices
defined in (8) for all i = 1, . . . , s.

Proof. Fix an arbitrary i ∈ {1, . . . , s}. By (8), r̃
(i)
j,j = 1 holds trivially true for all

j = 1, . . . , s−1. Next consider any off-diagonal element r̃
(i)
j,k of the matrix R̃(i) (i.e.,

j 6= k). From the definition of the indices j′, k′ in (8), it follows that j′ 6= k′, j′ 6= i
and k′ 6= i. Consequently, rj′,k′ , rj′,i and rk′,i are off-diagonal elements of R. By
definition, it holds that rj′,k′ ≥ ρmin. Due to Proposition 2.5, one has that rj′,i ≥ 0
and rk′,i ≥ 0. Moreover, by j′ 6= k′, rj′,i and rk′,i are different elements of R. It
follows that rj′,irk′,i ≤ ρ1ρ2, whence, by amenability, rj′,k′ − rj′,irk′,i ≥ ∆(R) ≥ 0.

Therefore, r̃
(i)
j,k ≥ 0 owing to (8). Summarizing, R̃(i) ≥ Is−1.

In order to prepare a result for the class of amenable correlation matrices, we
define for each i = 1, . . . , s a correlation matrix Σ(i) of order (i, i) having constant
nondiagonal entries equal to ρ1. Note that Σ(i) is positive semi-definite (as required
for a correlation matrix) if ρ1 ≥ 0 (which is automatic if R is amenable). From here
we derive for each i = 2, . . . , s generalized quantiles of order i as the unique values
τ (i) satisfying the equality

ΦΣ(i)
(
τ (i), . . . , τ (i)

)
= p. (10)

Here, uniqueness of the τ (i) follows from the fact that a regular Gaussian distri-
bution function is strongly increasing for arguments strictly inreasing in each com-
ponentNote that in the result of the following theorem the norm of the gradient
is estimated by an expression depending exclusively on the original data R,p,s but
not on the specific argument z.
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Theorem 2.7. Let R = (ri,j)
s
i,j=1 be an amenable, positive definite correlation

matrix with largest nondiagonal element ρ1. Consider an arbitrary point z such
that ΦR (z) = p ∈ [0.5, 1]. Then,

∥∥∇ΦR (z)
∥∥
∞ ≥ f(τ)

s∏
j=2

F

 1− ρ1√
1− (ρ1)

2
τ (j)

 (11)

where f and F refers to the density and distribution function, respectively, of the
one-dimensional standard Gaussian distribution, the τ (j) are defined in (10) and τ
is the unique solution of the equation

ΦR (τ, . . . , τ) = p. (12)

Proof. Define indices i1, . . . , is in a way that zi1 ≤ · · · ≤ zis . Since distribution
functions are always dominated by their marginal distribution functions, it follows
that

0.5 ≤ p = ΦR (z) ≤ F (zi) i = 1, . . . , s.

Therefore,

0 ≤ zi1 ≤ · · · ≤ zis . (13)

According to (7),

z̃(i1) =

z1 − r1,i1zi1√
1− r2

1,i1

, · · · , zi1−1 − ri1−1,i1zi1√
1− r2

i1−1,i1

,
zi1+1 − ri1+1,i1zi1√

1− r2
i1+1,i1

, · · · , zs − rs,i1zi1√
1− r2

s,i1

 .

Recall that R ≥ 0 by Proposition 2.5. Now, (13) implies that

zi − ri,i1zi1 ≥ (1− ri,i1) zi ∀i ∈ {1, . . . , s} .
Consequently,

z̃
(i1)
i ≥ (1− ri,i1) zi√

1− r2
i,i1

∀i ∈ {1, . . . , i1 − 1}

z̃
(i1)
i ≥ (1− ri+1,i1) zi+1√

1− r2
i+1,i1

∀i ∈ {i1, . . . , s− 1} .

Obviously, the correlation coefficients occuring in the above two expressions are off-

diagonal, hence smaller than or equal to ρ1. The function t 7→ (1− t)
(
1− t2

)−1/2

being decreasing, it follows that

z̃
(i1)
i ≥ 1− ρ1√

1− (ρ1)
2
zi ∀i ∈ {1, . . . , i1 − 1}

z̃
(i1)
i ≥ 1− ρ1√

1− (ρ1)
2
zi+1 ∀i ∈ {i1, . . . , s− 1} .

s−1∏
i=1

F
(
z̃

(i1)
i

)
≥

s∏
i=1,i6=i1

F

 1− ρ1√
1− (ρ1)

2
zi

 =

s∏
j=2

F

 1− ρ1√
1− (ρ1)

2
zij

 . (14)

Now, let j ∈ {1, . . . , s} be arbitrarily given. Assume that zij < τ (j) with τ (j) defined
by (10). Then, by (13),

zik < τ (j) ∀k = 1, . . . , j. (15)
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Denote by R̂ the correlation matrix induced by components i1, . . . , ij (i.e., R̂ is
obtained from R by selecting rows and columns corresponding to these indices).
We exploit once more that distribution functions are dominated by their marginal
distribution functions of any order and obtain that

p = ΦR (z) ≤ ΦR̂
(
zi1 , . . . , zij

)
< ΦR̂

(
τ (j), . . . , τ (j)

)
, (16)

where the strict inequality is a consequence of (15). Since R̂ ≤ Σ(j) (componentwise)
by definition of Σ(j), the well-known Slepian’s inequality yields that

ΦR̂
(
τ (j), . . . , τ (j)

)
≤ ΦΣ(j)

(
τ (j), . . . , τ (j)

)
= p.

This is a contradiction with (16), whence

zij ≥ τ (j) ∀j = 1, . . . , s. (17)

Combining this with (14), we have that

z̃
(i1)
ij
≥ 1− ρ1√

1− (ρ1)
2
τ (j) j = 2, . . . , s.

Now, consider the matrix R̃(i1) defined in (8). Since R̃(i1) ≥ Is−1 (component-
wise) by Lemma 2.6, applying first Slepian’s inequality again, and then taking into
account (14) and (17), we arrive at

ΦR̃
(i1)
(
z̃(i1)

)
≥ ΦIs−1

(
z̃(i1)

)
=

s−1∏
i=1

F
(
z̃

(i1)
i

)
≥

s∏
j=2

F

 1− ρ1√
1− (ρ1)

2
τ (j)

 .

On the other hand, the standard Gaussian density being decreasing for positive
arguments, (13) leads to

f (zi1) = max
i=1,...,s

f(zi),

whence ∥∥∇ΦR (z)
∥∥
∞ = max

i=1,...,s
f(zi)Φ

R̃(i)
(
z̃(i)
)
≥ f (zi1) ΦR̃

(i1)
(
z̃(i1)

)
≥

(
max
i=1,...,s

f(zi)

)
·
s∏
j=2

F

 1− ρ1√
1− (ρ1)

2
τ (j)

 . (18)

Next we claim that there exists some index i∗ such that zi∗ ≤ τ , where τ is defined
in the assertion of our theorem. Indeed, otherwise zi > τ for all i and so we end up
at the contradiction

p = ΦR (z) > ΦR (τ, . . . , τ) = p.

Since zi ≥ 0 for all i (see (13)) and f is decreasing for nonnegative arguments, one
derives that

max
i=1,...,s

f(zi) = f( min
i=1,...,s

zi) ≥ f (τ)

such that the assertion of the Theorem now follows from (18).
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3. Precision of gradients of Gaussian distribution functions. Although for-
mula (6) establishes an analytical relation between partial derivatives and function
values of Gaussian distribution functions, one has to take into account for numerical
applications that function values themselves are already imprecise and can only be
approximated by methods as described in [1, 5, 20]. Thanks to relation (6) one is
not forced to further approximate partial derivatives by means of finite differences of
function values already being imprecise. Rather, one may employ the same method
to the computation of partial derivatives and thus avoid additional imprecision by
the impact of another type of approximation. So, intuitively it is clear that in
view of (6) the error of gradients can be controled by that of function values. Note
that under the error of gradients we do not understand the norm of the absolute
difference between theoretical and computed gradient but rather the norm of the
difference between normalized theoretical and computed gradient:

err
(
∇ΦR (z)

)
:=

∥∥∥∥∥ ∇ΦR (z)

‖∇ΦR (z)‖∞
−

[
∇ΦR (z)

]comp∥∥[∇ΦR (z)]
comp∥∥

∞

∥∥∥∥∥
∞

.

(note that under the computed gradient
[
∇ΦR (z)

]comp
we understand the gradient

obtained via the analytical relation (6) from computed function values
[
ΦR̃

(i) (
z̃(i)
)]comp

).

The reason for this definition of error is that in a numerical context, the direction
of a gradient is much more important than its norm. For instance, if gradients are
used in a cutting plane method, the Walkup-Wets isometry theorem implies that
the truncated Hausdorff distance between the cuts (halfspaces) defined by the gradi-
ents at a given point equals the truncated Hausdorff distance between the gradients
themselves, which is exactly the error defined above. In other words, the error of
gradients can be also interpreted as the error of the cuts induced by them. A first
simple consequence of the triangle inequality yields the relation

err
(
∇ΦR (z)

)
≤ 2

∥∥∇ΦR (z)−
[
∇ΦR (z)

]comp∥∥
∞

‖∇ΦR (z)‖∞
.

Using (6) and denoting by ’fv-err’ the maximum absolute precision for the compu-
tation of function values for Gaussian distribution functions (predetermined by the
user), one may continue via (6) as

err
(
∇ΦR (z)

)
≤ 2

max
i=1,...,s

f(zi)
∣∣∣ΦR̃(i) (

z̃(i)
)
−
[
ΦR̃

(i) (
z̃(i)
)]comp∣∣∣

max
i=1,...,s

f(zi)ΦR̃
(i)
(
z̃(i)
)

≤ 2

fv-err · max
i=1,...,s

f(zi)

max
i=1,...,s

f(zi)ΦR̃
(i)
(
z̃(i)
) . (19)

Now, we may invoke Proposition 2.1 in order to derive the following first estimate
for the error of gradients in terms of the error of function values in the case of
independent components:

Corollary 3.1. Consider an arbitrary point z such that ΦIs (z) = p. Then,

err
(
∇ΦIs (z)

)
≤ 2

fv-err

p
. (20)
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Proof. One may continue (9) as

max
i=1,...,s

f(zi)Φ
R̃(i)

(
z̃(i)
)
≥ p max

i=1,...,s
f(zi)

because of F (zi) ≤ 1. Now, the assertion follows from combining the previous
relation with (19).

Due to p ≈ 1 in typical applications of chance constrained programming, the result
of the Proposition yields that the error of the gradient is at most approximately
double the chosen maximum error of function values in the case of independent
components. Unfortuantely, this efficient estimate is of limited practical use be-
cause in the independent case both the function values and the gradients can be
computed almost exactly as the calculus reduces to a multiplication of values of one-
dimensional Gaussian distribution functions which is almost free of error. In the
more interesting case of correlated components, we obtain the following Corollary
by directly combining (18) with (19):

Corollary 3.2. Consider an arbitrary point z such that ΦIs (z) = p. Then, under
the assumptions of Theorem 2.7 it holds that

err
(
∇ΦR (z)

)
≤ 2

fv-err
s∏
j=2

F

(
1−ρ1√
1−(ρ1)2

τ (j)

) .
As an illustration, we consider the following example:

Example 3.3. Let p = 0.9 and the following correlation matrix with band structure
be given:

R =


1 0.5 0 0

0.5 1 0.5 0
0 0.5 1 0.5
0 0 0.5 1

 .

Then, ρ1 = 0.5 and the correlation matrices Σ(i) defined before (10) get the form

Σ(2) =

(
1 0.5

0.5 1

)
,Σ(3) =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 ,Σ(4) =


1 0.5 0.5 0.5

0.5 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1

 .

Now, the generalized quantiles defined in (10) and (12) are easily determined by
using any code for the evaluation of multivariate Gaussian distribution function
and bisecting on the values looked for as

τ (2) = 1.577; τ (3) = 1.734; τ (4) = 1.838; τ = 1.885.

Then, f (τ) = 0.0675 and

s∏
j=2

F

 1− ρ1√
1− (ρ1)

2
τ (j)

 = 0.5896.

Accordingly, Theorem 2.7 and Corollary 3.2 yield that∥∥∇ΦR (z)
∥∥
∞ ≥ 0.0398 and err

(
∇ΦR (z)

)
≤ 3.39 · fv-err,

respectively.
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4. Sensitivity of optimal values to probabilistically constrained optimiza-
tion problems. When solving a probabilistically constrained optimization prob-
lem like (1), one is usually confronted with the fact that the underlying random
vector ξ and its distribution P ◦ ξ−1 are not exactly known. Often, however, they
may be approximated, for instance on the basis of historical observations, by some
other random vector η and then instead of the original problem (1) one solves the
optimization problem

min
{
cTx|P (Ax ≥ η) ≥ p

}
. (21)

This (inevitable) approximation step immediately raises the question about stability
of the problem, in particular about sensitivity of its solution (set) and of its optimal
value. For simplicity, let us confine ourselves in the following to the sensitivity
of optimal values. Denote for an arbitrary random vector η the optimal value of
problem (21) by

ϕ (η) := inf
{
cTx|P (Ax ≥ η) ≥ p

}
(22)

(note that an infimum occurs here because (21) does not necessarily have a solution).
In particular, ϕ (ξ) is the optimal value of the original problem (1). The stability
of probabilistically constrained optimization problem has been analyzed in a fairly
complete fashion in a series of papers [6, 7, 8, 9]. As pointed out in [16], stability of
any stochastic optimization problem requires the choice of an appropriate probabil-
ity metric adapted to the concrete problem structure and measuring the deviation
between the underlying theoretical random vector ξ and its approximation η. An
appropriate choice in the context of our problem (1) (and its perturbation (21)) is
the following discrepancy (see, e.g. [9]):

∆(ξ, η) := sup
z∈Rs

|P (z ≥ ξ)− P (z ≥ η)| = sup
z∈Rs

|Fξ (z)− Fη (z)| , (23)

where the second representation, adapted to the equivalent formulation (3) of the
original problem, refers to the distribution function of the respective random vectors.
This discrepancy is well-known as the Kolmogorov distance between the distribu-
tions P ◦ ξ−1 and P ◦ η−1 of ξ and η. Note that the term distance relates just to the
distributions but not to the random vectors themselves: ∆(ξ, η) = 0 implies that
P ◦ ξ−1 = P ◦ η−1 (or ξ ∼ η) but not necessarily ξ = η.

Using the discrepancy (23), the following more general result from [7] (Theorem
1) can be invoked for deriving the following result for our problem:

Theorem 4.1. Let problem (1) be defined by a Gaussian random vector ξ and have
a nonempty and bounded solution set. Moreover assume that there exists a point x∗

such that P (Ax∗ ≥ ξ) > p. Then, there exist constants L, δ > 0 such that

|ϕ (ξ)− ϕ (η)| ≤ L∆(ξ, η)

for all random vectors η with ∆(ξ, η) < δ.

Note, that all assumptions of this Theorem refer to the original problem and no
assumptions are made on the perturbed problem. In particular, the perturbed
random vector η does not have to have a nice distribution like the Gaussian one
(implying differentiability and convexity properties) but could follow, for instance,
a discrete distribution coming from an empirical approximation of ξ. Although
the result of the Theorem is nice in that it identifies a Lipschitz-like behavior of
optimal values under perturbation, its practical use is limited due to the fact that the
constant L is hard to be eplicitly quantified from the data of the original problem.
The following Theorem is, to the best of our knowledge, the first attempt to do so in
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a concrete setting. In order to keep its presentation sufficiently simple, we confine
ourselves to the weaker property of upper Lipschitz continuity of optimal values.

Proposition 4.2. In problem (1), let ξ be an s-dimensional Gaussian random vec-
tor distributed according to ξ ∼ N (µ,Σ). Assume that the problem has a solution.
Let R be the correlation matrix associated with Σ. Finally, let κ > 0 be given such
that ∥∥∇ΦR(y)

∥∥
∞ ≥ κ ∀y : ΦR(y) = p, (24)

where ΦR is the distribution function according to N (0, R) (see (4)).
Then, for each ε ∈ (0,κ) there is some δ > 0 with

ϕ (η) ≤ ϕ (ξ) +
‖c‖

∥∥AT (AAT )−1
∥∥

2(
κ
/

max
i=1,...,s

√
Σii

)
− ε
·∆(ξ, η)

for all random vectors η with ∆(ξ, η) < δ. Here, ‖·‖2 refers to the 2-norm of
matrices.

Proof. We consider problem (1) in its equivalent form (3). Let x̄ be one of its
solutions (whose existence is assumed). In particular,

ϕ (ξ) = cT x̄. (25)

Since the objective of this problem is linear, it follows that Fξ(Ax̄) = p. The
correlation matrix R associated with the covariance matrix Σ computes according
to R = D−1/2ΣD−1/2, where D is a diagonal matrix with Dii = Σii. Hence, (4)
implies that ΦR

(
D−1/2 (Ax̄− µ)

)
= p. Then, (24) ensures that∥∥∥∇ΦR(D−1/2 (Ax̄− µ))

∥∥∥
∞
≥ κ. (26)

Derivation of (4) yields that

‖∇Fξ(Ax̄)‖2 = ∇ΦR
(
D−1/2 (Ax̄− µ)

)
D−1

[
∇ΦR

(
D−1/2 (Ax̄− µ)

)]T
=

s∑
i=1

1

Dii

[
∂ΦR

∂yi

(
D−1/2 (Ax̄− µ)

)]2

≥ 1

max
i=1,...,s

Dii

∥∥∥∇ΦR
(
D−1/2 (Ax̄− µ)

)∥∥∥2

.

Taking into account (26), one arrives at

‖∇Fξ(Ax̄)‖ ≥ κ̃ :=
κ

max
i=1,...,s

√
Σii

. (27)

For any t ∈ R we have that

Fξ(Ax̄+ t∇Fξ(Ax̄)) = Fξ(Ax̄) + 〈∇Fξ(Ax̄), t∇Fξ(Ax̄)〉+ o(t)

= p+ t ‖∇Fξ(Ax̄)‖2 + o(t).

Now, let any ε ∈ (0,κ) be given. We choose δ̃ > 0 such that

o(t) ≥ −ε ‖∇Fξ(Ax̄)‖ t ∀t ∈ [0, δ̃).

Then,

Fξ(Ax̄+ t∇Fξ(Ax̄)) ≥ p+ t ‖∇Fξ(Ax̄)‖ (‖∇Fξ(Ax̄)‖ − ε) ∀t ∈ [0, δ̃). (28)
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We further put δ := κ̃(κ̃ − ε)δ̃. Now, let any random vector η be given such that
∆(ξ, η) < δ. From (27) it follows that

t̄ :=
∆(ξ, η)

‖∇Fξ(Ax̄)‖ (‖∇Fξ(Ax̄)‖ − ε)
< δ̃

Then, (28) yields that

Fξ(Ax̄+ t̄∇Fξ(Ax̄)) ≥ p+ ∆(ξ, η).

With
u := t̄AT (AAT )−1∇Fξ(Ax̄) (29)

we infer that
Fξ(A(x̄+ u)) ≥ p+ ∆(ξ, η),

whence by (23),

Fη(A(x̄+ u)) ≥ Fξ(A(x̄+ u))−∆(ξ, η) ≥ p.
Along with (22), this implies that ϕ (η) ≤ cT (x̄ + u). Moreover, by (29), (27) and
definition of t̄, one has that

‖u‖ ≤ t̄
∥∥AT (AAT )−1

∥∥
2
‖∇Fξ(Ax̄)‖ ≤

∥∥AT (AAT )−1
∥∥

2

κ̃ − ε
∆(ξ, η).

With (25) it follows that

ϕ (η)− ϕ (ξ) ≤ cT (x̄+ u)− cT x̄ ≤
‖c‖

∥∥AT (AAT )−1
∥∥

2

κ̃ − ε
∆(ξ, η).

Referring back to the definition of κ̃ in (27), this proves the proposition.

Observe that the result of this proposition makes a statement on the sensitivity of
optimal values in problem (1) that depends on the norm ‖c‖ of the linear objective
functional although the solution of the problem itself is not affected by this norm
but just by the direction of c. In order to arrive at a sensitivity result independent
of this norm, one might either suppose without loss of generality, that ‖c‖ = 1 in
problem (1) or alternatively pass to the sensitivity of relative (with respect to the
solution) optimal values.

It is interesting to observe a close relation of the statement of Proposition 4.2
with the so-called slope of functions in metric spaces as introduced in [2]. More
precisely for a metric space M , a function h : M → R and a point x ∈M , the slope
of h at x is defined as

|∇h(x)| := lim sup
u→x,u 6=x

[h(x)− h(u)]+
d(x, u)

. (30)

The notation is justified by the fact that in a differentible setting |∇h(x)| would
correspond to the norm of the gradient of h at x. Of course, in a differentible
setting one could replace h by −h without changing the norm of the gradient. In
the nondiffernetiable case, however, it makes a big difference to do so. Then, (30)
corresponds to a maximum local decrease of h at x. Therefore, |∇h(x)| is also
sometimes referred to as the maximal decreasing slope and denoted by |∇−h(x)|.
This concept plays an important role in the theory of gradient flows or in stability
(metric regularity, error bounds) of set-valued analysis (e.g., [3, 10]). On the other
hand, as in the case of our sensitivity analysis of optimal values, it is often important
to also have information about the maximal increasing slope, which would be defined
in a natural way as
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∣∣∇+h(x)
∣∣ := lim sup

u→x,u 6=x

[h(u)− h(x)]+
d(x, u)

.

Now, disregarding the negligible fact that (23) defines just a semi-metric but not
a metric on the set of s-dimensional random vectors, it is natural to introduce the
maximal increasing slope for the optimal value function ϕ at ξ as∣∣∇+ϕ (ξ)

∣∣ := lim sup
∆(ξ,η)→0,ξ 6=η

[ϕ (η)− ϕ (ξ)]+
∆(ξ, η)

.

Then, we derive the following result as an mmediate consequence of Proposition
4.2:

Theorem 4.3. Under the assumptions of Proposition 4.2, one has that∣∣∇+ϕ (ξ)
∣∣ ≤ ‖c‖∥∥AT (AAT )−1

∥∥
2(

κ
/

max
i=1,...,s

√
Σii

) .
Now, in order to extract explicit quantitative information from Theorem 4.3, it is
essential to have a concrete value of κ which can be directly computed from the
input data of the problem. But, recalling from the statement of Proposition 4.2
that κ is a lower estimate for the (maximum) norm of the gradient ∇ΦR(y) at a
point y satisfying ΦR(y) = p, it is exactly the results from Section 2 (Proposition
2.1 and Theorem 2.7) which provide us which such desired concrete value of κ.
Combination with Theorem 4.3 yields the following two corollaries.

Corollary 4.4. In problem (1), let ξ be an s-dimensional Gaussian random vector
distributed according to ξ ∼ N (µ,Σ) where Σ is diagonal (i.e., the components of
ξ are independent). Assume that the problem has a solution. Then,∣∣∇+ϕ (ξ)

∣∣ ≤ ‖c‖
∥∥AT (AAT )−1

∥∥
2(

f(qp1/s) · p1−1/s

/
max
i=1,...,s

√
Σii

) ,
where f and qα denote the density and the α-quantile of the 1-dimensional standard
Gaussian distribution, respectively.

Corollary 4.5. In problem (1), let ξ be an s-dimensional Gaussian random vector
distributed according to ξ ∼ N (µ,Σ) where the correlation matrix R associated
with Σ is amenable in the sense of Definition 2.2. Assume that the problem has a
solution. Then,∣∣∇+ϕ (ξ)

∣∣ ≤ ‖c‖
∥∥AT (AAT )−1

∥∥
2(

f(τ)
s∏
j=2

F

(
1−ρ1√
1−(ρ1)2

τ (j)

)/
max
i=1,...,s

√
Σii

) ,
where the meaning of f, F, ρ1, τ, τ

(j) is as in Theorem 2.7.

The following example illustrates Corollary 4.4:

Example 4.6. In problem (1), let s = 10, p = 0.9,Σ = Is, A = In and c =
(1, . . . , 1) / ‖1, . . . , 1‖. Then it is easily seen that problem (1) has a solution and
that

‖c‖ =
∥∥AT (AAT )−1

∥∥
2

= max
i=1,...,s

√
Σii = 1, p1−1/s = 0.9095, qp1/s = 2.309, f(qp1/s) = 0.0277.
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Consequently, by Corollary 4.4, |∇+ϕ (ξ)| ≤ 39.6.

A similar example could be constructed to illustrate Corollary 4.5 as well.
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