TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

TiMO BERTHOLD*, STEFAN HEINZ™,
MARC E. PFETSCH', STEFAN VIGERSKE>™*

Large Neighborhood Search beyond MIP

Technische Universitat Braunschweig, Institut fiir Mathematische Optimierung, PockelsstraBe 14, 38106 Braunschweig, Germany, m.pfetsch@tu-bs.de

2 Humboldt-Universitat zu Berlin, Institut fiir Mathematik, Unter den Linden 6, 10099 Berlin, Germany, stefan@math.hu-berlin.de

* Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

Z1B-Report 11-21 (May 2011)

Large Neighborhood Search beyond MIP 1

Large Neighborhood Search beyond MIP
Timo Berthold!, Stefan Heinz', Marc E. Pfetsch?, Stefan Vigerske?

L Zuse Institute Berlin
Takustr. 7, 14195 Berlin, Germany
{berthold,heinz} @zib.de

2 Technische Universitit Braunschweig, Institut fiir Mathematische Optimierung
Pockelsstrafle 14, 38106 Braunschweig, Germany
m.pfetsch@tu-bs.de

3 Humboldt-Universitit zu Berlin, Institut fiir Mathematik
Unter den Linden 6, 10099 Berlin, Germany
stefan @math.hu-berlin.de

Abstract

Large neighborhood search (LNS) heuristics are an important component of modern branch-and-
cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use
the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However,
for more general problem classes, the LP relaxation alone may not contain enough information about
the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear
or not all constraints are present in the current relaxation.

In this paper, we discuss a generic way to extend LNS heuristics that have been developed for
MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of
constraint programming (CP). We present computational results of LNS heuristics for three problem
classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization
instances, and resource-constrained project scheduling problems. Therefore, we have implemented
extended versions of the following LNS heuristics in the constraint integer programming framework
SCIP: LOCAL BRANCHING, RINS, RENS, CROSSOVER, and DINS. Our results indicate that a
generic generalization of LNS heuristics to CIP considerably improves the success rate of these
heuristics.

1 Introduction

Large neighborhood search (LNS) is a variant of the local search paradigm that has been widely used
in Constraint Programming, Operations Research, and Combinatorial Optimization [[1, 22, 23]]. LNS has
proved to be an extremely successful metaheuristic for a wide range of applications in recent years, see,
for example, Pisinger and Rgpke [24]. The main idea is to restrict the search for “good” solutions to
a neighborhood of specific points — usually close to optimal/feasible solutions. The hope is that such a
restriction makes the subproblem much easier to solve, while still providing solutions of high quality.

In mixed-integer linear programming (MIP), LNS has recently been realized in a series of primal
heuristics [, 6, [13-15] 26]]. The so-called LOCAL BRANCHING heuristic has been further extended to
constraint programs [16] and mixed-integer nonlinear programs [[19]].

The goal of this paper is to show that the above mentioned LNS heuristics, which have specifically
been developed for MIP, can be extended in a straightforward manner to the broad class of so-called con-
straint integer programs. We show — via computational experiments for three general problem classes —
that this leads to very powerful heuristics. As prototype applications, we consider mixed-integer quadrat-
ically constrained programs (MIQCPs), pseudo-Boolean optimization (PBO), and resource-constrained
project scheduling problems (RCPSPs). Each of these problems forms a subclass of constraint integer
programs (CIPs) [3]. CIP adopts modeling and solving techniques from constraint programming (CP),
MIP, and satisfiability testing (SAT). The aim is to restrict the generality of CP modeling as little as
needed, while still retaining the full performance of MIP solving techniques.

The contribution of this paper is to investigate the performance of generic implementations of LNS
heuristics in a complete CIP solver; note that this is in general not competitive with handcrafted problem

2 Timo Berthold et al.

specific heuristics. It turns out, that this allows for considerable improvements in finding “good” solu-
tions in the beginning of the solving process for instances in all three considered problem classes. Since
the restriction to a neighborhood of some solution again generates a CIP, LNS heuristics are conceptually
well suited as generic heuristics for CIPs. Thus, once a CIP solver is able to handle a certain problem
class, many LNS heuristics that work on this problem class come at almost no additional implementation
cost. We have realized these generic LNS heuristics and the concrete problem classes in the CIP solver
SCIP [3L127]. Its plugin oriented design allows for an easy implementation.

This paper is structured as follows. We first review LNS heuristics in MIP and describe the consid-
ered LNS heuristics and problem classes. We then briefly discuss their realization in SCIP, which is a
competitive solver for MIQCP [7]], PBO [9], and RCPSP [8]. Finally, we present computational results
that illustrate the effect of the considered LNS heuristics.

2 Large Neighborhood Search for MIP

A mixed-integer linear program is an N'P-hard optimization problem, which can be written in the fol-
lowing form

min d"x
s.t. Az <b,
T € Z, j e J,

where A € R™*" d € R",b € R™,and J C {1,...,n} denotes the subset of integral variables.

Many MIP primal heuristics published in recent years [5} 16l [13H15, 26]] are based on large neighbor-
hood search. These heuristics investigate a neighborhood of a small set of starting points such as the best
known integral solution (incumbent) or the optimal solution of the linear programming (LP) relaxation
in which the integrality restriction has been dropped. The heuristics create a sub-MIP of the original
MIP, typically by fixing some variables to values that are taken from the given points. For problems
with binary variables only, another possibility is to add linear constraints, which restrict the number of
variables that are different from the given point. By the use of auxiliary variables, this can be extended
to problems with general integer variables while maintaining linearity.

Obviously, a good definition of the neighborhood is the crucial point: The neighborhood should
contain high quality solutions, these solutions should be easy to find, and the neighborhood should be
easy to process. Naturally, these three goals are conflicting in practice. In the remainder of this section,
we will give a brief introduction to LNS heuristics for MIPs that have been proposed in the literature of
the last ten years.

LOCAL BRANCHING [14] measures the distance to the starting point in Manhattan norm on the inte-
ger variables and only considers solutions which are inside a k-neighborhood of the reference solution,
where k is typically between 10 and 20. This is done by adding a linear constraint that sums up the dis-
tance to the incumbent over all variables. In case of general integer variables, auxiliary variables might
have to be used to model the absolute value. For details, see [[14]].

A “good” MIP solution fulfills three conditions: it is integral, feasible for the linear constraints,
and it has a small objective function value (in case of minimization problem). The relaxation induced
neighborhood search (RINS) [[13]] uses two starting points: The incumbent MIP solution which fulfills
the first two requirements and the optimum of the LP relaxation which fulfills the latter two. RINS defines
the neighborhood by fixing all integer variables which take the same value in both solutions.

In contrast to RINS, the relaxation enforced neighborhood search (RENS) [6] does not require an
incumbent solution. Thus, it can be used as a start heuristic. RENS fixes all integer variables that take
an integral value in the optimal solution of the LP relaxation. For the remaining integer variables, the
bounds get tightened to the two nearest integral values.

CROSSOVER is an improvement heuristic that is inspired by genetic algorithms [} [26] and requires
more than one feasible solution. For a set of feasible solutions, e.g., the three best found so far, it fixes
variables that take identical values in all of them.

Large Neighborhood Search beyond MIP 3

RINS, RENS, and CROSSOVER solely fix variables; no further constraints are added to the subprob-
lem.

DINS [15] combines the ideas of RINS and LOCAL BRANCHING. It defines the neighborhood by
introducing a distance function between the incumbent solution and the optimum of the LP relaxation.
When applied during a branch-and-bound search, it further takes into account how variables change their
values at different nodes of the tree.

All those primal heuristics have been developed for mixed-integer linear programs. Except for
LocAL BRANCHING [16, [19], the authors are not aware of published extensions to more general prob-
lem classes. The mentioned heuristics depend on the existence of a relaxation and/or incumbent solution.

One possibility to extend them to more general problem classes is to apply them to the MIP which
results from taking a linear relaxation of the nonlinear problem plus the integrality constraints. In this
paper, we show that a more promising way is to create a subproblem by taking a copy of the original
problem plus additional constraints specific to the particular LNS heuristic.

3 Constraint Integer Programs

A constraint integer program (CIP) is an optimization problem with a finite number of variables, where
a linear function is minimized with respect to a finite set of constraints and with integrality restrictions
imposed on all or a subset of the variables. Each constraint is specified by a mapping that indicates
whether a given assignment to the variables satisfies this constraint or not. Further, it is required that
the subproblem remaining after fixing all integer variables can be solved efficiently. Typically, this
subproblem is a linear program [3[], but also nonlinear problems are possible, see, e.g., [L0]. Note that
general objective functions can be modeled by introducing an auxiliary variable that is linked to the
actual objective function via an additional constraint.

In this section we introduce the three problem classes which we use for our experiments. These
are mixed-integer quadratically constrained programs, pseudo-Boolean optimization, and resource-con-
strained project scheduling problems.

3.1 Mixed-Integer Quadratically Constrained Programs

A mixed-integer quadratically constrained program (MIQCP) is a special case of a CIP in which all
constraints are given by either linear or quadratic functions. MIQCPs arise in many areas, for example
in mine production scheduling [[11]. Formally, an MIQCP can be written in the following form:

min d'x
st. 2"Ajz+bl T+ <0, i=1,...,m
l’jEZ, 7€ J,

where A; € R"™ ™ b, € R", and ¢; € Rfori = 1,...,m, and J C {1,...,n} denotes the subset
of integral variables. If A; = 0, then constraint ¢ is linear, otherwise quadratic. If A; is positive
semidefinite, then the constraint ¢ is called convex, otherwise nonconvex. Note that quadratic objective
functions can be handled by including an appropriate constraint and an artificial variable.

In the presence of nonconvex constraints, SCIP applies a spatial branch-and-bound approach [10],
i.e., branching on continuous variables. As a consequence, the sizes of nonconvex problems that can be
solved efficiently are by several orders of magnitude smaller than those of convex problems. SCIP is a
competitive solver for MIQCP, see [10} [17].

Test Set. For our experiments we used the test set introduced in [[7]], from which we removed instances
that SCIP reformulates as MIPs during presolve. This leads to a test set of 64 instances.

4 Timo Berthold et al.

3.2 Pseudo-Boolean Optimization

Pseudo-Boolean optimization (PBO) extends the satisfiability testing (SAT) problem by allowing integer
coefficients in constraints, multiplication of variables, and an objective function. As in SAT, variables
take 0/1 (false/true) values. Applications of PBO problems arise, for example, in cryptography [21].

For a Boolean variable z € {0, 1}, a literal { is either the original variable x or its negation @ := 1—uz.
A (nonlinear) pseudo-Boolean problem with Boolean variables 1, ..., z, is an optimization problem
of the following form:

to
min Z c;i- 11 ¢ (1)
j=1 EGIOJ'
t;
s.t. Zai]" Hfzbl forizl,...,m
j:l EGL;J
x e {0,1}".
Here, m is the number of constraints, I;; is a subset of literals forz = 0,...,mand j = 1,...,t;, where

t; is the number of summands in constraint 7. All coefficients a;;, b;, c; are required to be integral. Let

T:={(,§) :i€{0,...,m}, je€{1,... t;}}.

The above formulation is very general: one can easily incorporate maximization, “<” constraints, equa-
tions, and pure satisfiability problems. If |I;;| < 1 for all (i, j) € Z, the objective function and the con-
straints are linear expressions in the variables. We call such instances linear pseudo-Boolean problems.
If the objective function equals zero (or any other constant), we have satisfiability problems, otherwise
optimization problems. In this paper, we only consider nonlinear PBO problems with objective function.
For more details on the handling of nonlinear PBO problems in SCIP, see [9].

Test Set. For our experiments, we use the OPT-SMALLINT-NLC instances of the pseudo-Boolean
competition 2010, see [12]. This set contains 409 instances that contain at least one nonlinear constraint

and an objective function. In this category, SCIP was the best solver of all submitted solvers in the years
2009 and 2010.

3.3 Resource-Constrained Project Scheduling Problem

The resource-constrained project scheduling problem (RCPSP) consists of a set J of non-preemptable
jobs that have to be scheduled over time and a set R of renewable resources. Each resource £ € R has
bounded capacity R, € N. Every job j has a processing time p; € N and resource demands 7, € N
for each resource k € R. Moreover, the schedule has to satisfy precedence constraints which are given
via a precedence graph D = (V, A) with V' C J. An arc (7,j) € A represents the fact that job ¢ must
be finished before job j starts. The task is to schedule all jobs with respect to resource and precedence
constraints, such that the makespan, i.e., the latest completion time of all jobs, is minimized.

The RCPSP can be modeled easily as a constraint program using the global cumulative con-
straint [4], which enforces that at each point in time, the accumulated demand of the currently running
jobs does not exceed the given capacities. Given a vector S of start time variables S; for each job j, the
RCPSP can be modeled as follows:

min maxS; + p;
jeg

st Si+pi <8 V(i) € A)
cumulative(S,p,r .k, Rx) VkeR
Sj N Vj cJ.

To formulate this problem as a CIP, we introduce an artificial variable X for the makespan and add
constraints S; + p; < X forall j € J. This CIP model was previously considered in [&].

4

Large Neighborhood Search beyond MIP 5

Test Set. For our experiments we used the RCPSP instances in the PSPLIB [235]]. This library contains
four categories which differ by the amount of jobs which have to be scheduled: 30, 60, 90, or 120 jobs.
The first three categories contain 480 instances each, the last 600 instances. This gives a total of 2040
instances.

4 Implementation in SCIP

The framework SCIP solves constraint integer programs to proven global optimality by a branch-and-cut
algorithm. This means that the problem is recursively split into smaller subproblems, thereby creating
a branching tree and implicitly enumerating all potential solutions. At each node, an LP relaxation is
solved which may be strengthened by adding further valid constraints (cutting planes). Nodes in which
the lower bound of the LP relaxation shows that it cannot contain feasible solutions better than the best
primal solution can be pruned from the search tree. Primal heuristics are used as supplementary methods
to improve the upper bound.

In branch-and-bound algorithms that use an LP relaxation, the knowledge of a high quality primal
solution early during the search often is a crucial part of the optimization procedure. A lot of procedures
such as cutting plane separation or pre-solving are applied exclusively or at least more extensively at
the root node than at other nodes. Knowing a primal solution during root node processing guides the
remaining search and help to deduce further reductions of the variable domains, thereby avoiding redun-
dant search. This is achieved via reduced cost and pseudo objective propagation, see, e.g., [20]. These
reductions can lead to stronger cutting planes; thus, a good primal solution may help to improve the dual
bound. Note that in SCIP, heuristics are applied in a sequential order, processing the gained information
between the calls. Consequently, the performance of one heuristic may influence another heuristic.

SCIP follows a plugin-based design. The core provides all necessary infrastructure to implement
branch-and-bound based algorithms. It handles the branching tree along with all subproblem data, auto-
matically updates the LP relaxations and domain storage, manages parameter settings, and incorporates
its own memory management. Additionally, a cut and a solution pool, pricing and separation storage
management, and a SAT-like conflict analysis mechanism [2]] are available.

Besides the infrastructure, all main algorithms are implemented as external plugins. Plugins are
objects that interact with the framework through callback functions specified by the user. The default
plugins that are included in the standard distribution of SCIP implement a full-scale stand-alone MIP
solver. In particular, SCIP features implementations of the five LNS heuristics for MIP that have been
described in Section [2| Further, SCIP includes plugins that allow to solve the problem classes from
Section 3] see [8H10].

Originally, the LNS heuristics implemented in SCIP created the LNS-subproblem by taking a copy
of the LP relaxation, adding integrality constraints, and fixing variables (or adding a local branching con-
straint). Recently, we have implemented copying procedures in SCIP and redesigned all LNS heuristics
to copy the original CIP into a new SCIP instance rather than the relaxation and applying the neighbor-
hood search on this copy.

The original approach works well for MIP, since the MIP is fully specified through its LP relaxation
and the integrality constraints. This, however, is not true for more general classes of CIP, i.e., an LP
relaxation may not incorporate all information to specify the corresponding CIP, see, e.g., [28] for LP
relaxations of MINLPs. In this case, a feasible solution of the LNS problem is no longer guaranteed to
be feasible for the original problem. As a consequence, the chances that a LNS heuristic finds a feasible
solution when working only on the relaxation of the problem are usually small. Thus, copying the
whole problem, restricting the search space to a neighborhood of some point, and solving the resulting,
hopefully easier, CIP seems a more promising approach for problem classes that are more general than
MIP.

Note that LNS heuristics do not make any particular assumptions on the problem class. Thus, the ap-
proach of using a copy of the whole CIP enables the easy application of LNS heuristics to any problem
class for which the corresponding SCIP plugins implement the required copy methods. SCIP can be

6 Timo Berthold et al.

seen as an interface here: the formulation of a problem as constraint integer program allows the access to
all metaheuristic methods described in Section [2] Unlike for most classic metaheuristic approaches, no
additional problem specific adaption of the heuristic is necessary. The implementation of the constraint
handlers (e.g., for quadratic, cumulative, and logic constraints) that enable SCIP to solve the correspond-
ing types of problems to optimality suffices to get an implementation of the mentioned LNS heuristics
for free. The additional power comes from the fact that the copied instance allows for stronger constraint
propagation than that of linear constraints and separation of problem specific cutting planes.

5 Computational Experiments

The aim of our computational experiments is to investigate the potential of LNS heuristics, applied in-
side a branch-and-bound process, for more general problem classes than MIP. Since we are interested in
finding good primal solutions early in the solution processes, we ran all experiments with a node limit of
one, i.e., we only solved the root node of the branch-and-bound tree. We also impose a time limit of 24
hours. All computations presented in the following used SCIP version 2.0.1.3. As the underlying linear
programming solver we choose CPLEX 12.2.0.0, continuous quadratic subproblems in the MIQCP ex-
periments were solved by IPOPT 3.9 using CPPAD version t runk (20110118) for computing function
derivatives in case quadratic constraints are reformulated to second order cone constraints. The results
were obtained on a Linux cluster of 64bit Intel Core 13-550 CPUs at 3.2 GHz with 4 MB cache and 8 GB
main memory.

In the first experiment, we used the default settings of SCIP, in which the only LNS heuristic used at
the root node is RENS, based on the LP relaxation. In [6]], it has been shown that RENS often succeeds in
finding feasible solution for MIPs during root node processing. In a second experiment, we keep the LP
as basis for the LNS heuristics and additionally run all other LNS heuristics at the root node; we call the
corresponding settings LP based. In our third experiment, we again use all LNS heuristics and enabled
copying the original CIP when creating the subproblem in a LNS heuristic; these settings are called CIP
based.

Most of the heuristics mentioned above are improvement heuristics. This means they need a feasible
solution as starting point. In case of the resource-constrained project scheduling problems we are faced
with the problem that in most cases none of the default SCIP root node heuristics produces a feasible
solution. Therefore, we used a standard problem specific start heuristic which is based on a fast list
scheduling algorithm [18]] and is run before the root node is processed. This heuristic has been used in
all three runs right in the beginning of root node processing. Hence, the initial situation is the same in all
cases.

Tables [I] and 2] state the results for mixed-integer quadratically constrained programs (MIQCP),
pseudo-Boolean optimization (PBO), and resource-constrained project scheduling problems (RCPSP).
Columns “setting” indicates the used settings. Column “opt” gives the number of instances which were
solved to global optimality after the root node. The following two columns display the number of in-
stances where at least one feasible solution was found by one out of the five LNS heuristic discussed
in this paper (“sol”) and how often a “best” one. The next three columns compare the special setting
results against the default settings. Thereby, the columns “better” and “worse” compare the primal so-
lution (w.r.t. the objective function value) and state the number of instances where a better and a worse
primal solution was found. The column “dual” indicates the number of instances the dual bound was
better (w.r.t. the default setting). Finally, we state for each setting the shifted geometric mean of the
running “time” in seconds. Figure |1| and [2 show for each setting the distribution of the best solutions
found among the five LNS heuristics w.r.t. the overall test set size.

As mentioned in Section [2| SCIP calls heuristics sequentially, updating its status in between. In
particular, the incumbent solution used by an LNS improvement heuristic — and hence the constructed
subproblem — will be different when another (LNS) heuristic finds a different solution beforehand. In an
extreme case, a better solution found by one heuristic might lead to a worse overall performance, because
another heuristic fails. This explains, why there are a few cases where the solution quality deteriorates

Large Neighborhood Search beyond MIP 7

Table 1: The effect of LNS heuristics on mixed-integer quadratically constrained programs (MIQCP)
and nonlinear pseudo-Boolean optimization instances (PBO).

(a) 64 mixed-integer quadratically constrained program in- (b) 409 nonlinear pseudo-Boolean optimization instances of

stances from [7]]. the pseudo-Boolean competition 2010 [12].

setting opt sol best better worse dual time setting opt sol best better worse dual time
default 2 0 0 - - — 49 default 134 43 40 - - - 144
LP based 2 3 1 6 1 0 53 LPbased 139 153 116 102 0 4 155
CIPbased 4 47 45 39 0 3 16.1 CIPbased 150 193 192 174 4 12 158
best of 4 40 3 best of 150 179 12
default | | default |

LP based | LP based |

I
I
CIP based _j]: CIP based [N | |

(a) 64 mixed-integer quadratically constrained program in- (b) 409 nonlinear pseudo-Boolean optimization instances of
stances from [7]]. the pseudo-Boolean competition 2010 [12]].

Bl RENS HHE RiINs [DINS [1 CROSSOVER [] LoCAL BRANCHING

Figure 1: Distribution of best solutions among the five LNS heuristics for the MIQCP and PBO test sets

when using more heuristics.

The shifted geometric mean of values ¢1,. .., ¢, is defined as ([](¢; + s))l/ " — s with shift s. We
use a shift of s = 10 in order to reduce the effect of very easy instances in the mean values. Further,
using a geometric mean avoids that hard instances at or close to the time limit have a huge impact on the
measures. Thus, the shifted geometric mean has the advantage that it reduces the influence of outliers.

For each experiment we also present a row for the so-called “best of” setting. In this setting one
hypothetically selects the best setting out of the three considered ones for each individual instance.

It is notable in the results that the time limit of 24 hours was only hit by one pseudo-Boolean instance
(for all settings) and two MIQCP instances (for the CIP based setting). In case of the scheduling test sets
we found for all instances a feasible solution independently of the chosen setting. This is due to the use
of the problem specific start heuristic. For the nonlinear pseudo-Boolean test set SCIP found a feasible
solution for 358 out of 409 instances. Again this is independently of the settings. For the MIQCP test
set, however, the default and LP based settings could only show feasibility for 50 instances. The CIP
based setting proved feasibility for 6 additional instances.

Applying all LNS heuristics in LP based fashion instead of only the default heuristics lead to almost
no improvement for the RCPSP test set, i.e., we improve only on one out of 2040 instances (see Ta-
ble . For the MIQCP test set we achieve a small improvement, that is, for 9% of the instances a
better feasible solution is found. Considerable improvements can be observed on the PBO test set. Here,
five instances are additionally solved to optimality and for 102 out of 275 instances, that could not be
solved to optimality using default settings, a better solution is found. The running time for using all LNS
heuristics based on the LP relaxation increases moderately.

The picture changes significantly when the LNS heuristics are applied to the CIP itself. Now, large
improvements in the number and quality of feasible solutions can be observed. For 47 (out of 64) MIQCP
instances and 194 (out of 409) PBO instances, at least one of the heuristics finds a solution; in 45 and 192
cases, respectively, the best solution is found by an LNS heuristic. For RCPSP, we observe that there are
406 (out of 2040) instances where LNS heuristics produce a feasible solution, in all cases this further is
the best solution found during root node processing.

Better solutions are found when compared to default settings for 63% (174 of the 275 instances that
have not been solved to optimality by default) of the PBO instances, 62% (3%2) of the MIQCP instances,

8 Timo Berthold et al.

Table 2: The effect of LNS heuristics on resource-constrained project scheduling problems (RCPSP) of
the PSPLIB [25].

(a) 480 instances with 30 jobs each. (b) 480 instances with 60 jobs each.
setting opt sol best better worse dual time setting opt sol best better worse dual time
default 278 0 0 - - — 0.0 default 294 0 0 - - - 00
LPbased 278 0 0 0 0 0 00 LPbased 295 1 1 1 0 0 0.0
CIP based 298 83 83 82 0 7 0.0 CIPbased 321 79 79 71 0 6 0.1
best of 298 82 7 best of 321 71 6

(c) 480 instances with 90 jobs each. (d) 600 instances with 120 jobs each.
setting opt sol best better worse dual time setting opt sol best better worse dual time
default 319 0 0 - - — 0.0 default 120 0 0 - - - 041
LPbased 319 O 0 0 0 0 00 LPbased 120 O 0 0 0 0 0.1
CIP based 331 65 65 50 0 2 0.2 CIPbased 143 179 179 107 0 7 12
best of 331 50 2 best of 143 107 7
default | | default | l
LPbased | | LPbased | |
CIP based [| cIPbased [N |

(a) 480 instances with 30 jobs each. (b) 480 instances with 60 jobs each.
default | | default | |
LPbased | | LPbased | |
CIP based - | CIP based _ |

(c) 480 instances with 90 jobs each. (d) 600 instances with 120 jobs each.

Bl RENS HH RINs BB DINS []CROSSOVER [] LOCAL BRANCHING

Figure 2: Distribution of best solutions among the five LNS heuristics for the RCPSP of the PSPL1B

and between 33% (59/151 for 90 jobs) and 40% (82/202 for 30 jobs) of the RCPSP instances. Additionally,
more instances are solved to optimality now: two for MIQCP, 16 for PBO, and 82 for RCPSP. The
impact to the dual bound after root node processing is small, but mentionable: In each test set there are
at least two (and at most twelve) instances for which a better primal bound leads to an improvement of
the dual bound.

Further, one observes that the “best of”” setting almost always coincides with the CIP based setting,
i.e., using the CIP based setting almost never leads to a deterioration in solution quality. There are only
five instances of the PBO test set and one of the MIQCP test set for which the LP based version is better
than the CIP based. Hence, using a copy of the original CIP rather than a MIP relaxation nearly always
seems to be the best choice in terms of number of found solutions and solution quality.

Of course, these improvements may come at the cost of longer running times due to more difficult
subproblems in the heuristics. Especially the problem class MIQCP illustrates a main difference between
the LP and CIP based settings. While for a MIP one can usually assume that its difficulty is reduced
considerably by restricting the integer variables to a neighborhood of some reference point, this is not
necessarily need to be the case for every type of CIP. Thus, for MIQCP, the mean running time in the
CIP based setting is three times larger than in the LP based setting. On the other hand, for PBO the
increase in running time is marginal. For RCPSP, no clear statement is possible; the running times are
very small in all cases. Note, however, that the increase in root node processing time is likely to pay

Large Neighborhood Search beyond MIP 9

off when solving problems to optimality, since the branch-and-bound search can be initialized with an
improved primal bound.

6 Conclusion & Outlook

We proposed a generic way of generalizing large neighborhood search heuristics from mixed-integer
programming to constraint integer programming, using MIQCP, PBO, and RCPSP as showcases. The
generalization is not done in a problem-specific, but in a generic way, by using a restricted copy of the
full problem for the neighborhood search.

Computational results on mixed-integer quadratically constrained programs, pseudo-Boolean opti-
mization, and resource-constrained project scheduling problems have shown that this straight forward
approach already yields considerable improvements for CIPs with nonlinear constraints. For each prob-
lem type, the generalized LNS heuristics increased the quality of the best feasible solution after root node
computation. These results show a successful application of metaheuristics inside a complete solver.

We plan to investigate the interaction of different LNS heuristics. For MIP, this has partially been
done in [3]]. Questions to answer are how deactivating a certain LNS heuristic or restricting to a single
one influences the performance of SCIP. Further, it would be interesting to see the impact of using LNS
heuristics inside other LNS heuristics.

References

[1] Emile Aarts and Jan K. Lenstra, editors. Local Search in Combinatorial Optimization. John Wiley
& Sons, Inc., 1997.

[2] Tobias Achterberg. Conflict analysis in mixed integer programming. Discrete Optimization, 4(1):4—
20, 2007.

[3] Tobias Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Com-
putation, 1(1):1-41, 2009.

[4] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex schedul-
ing and placement problems. Mathematical and Computer Modelling, 17(7):57-73, 1993.

[5] Timo Berthold. Primal Heuristics for Mixed Integer Programs. Diploma thesis, Technische Uni-
versitit Berlin, 2006.

[6] Timo Berthold. RENS - relaxation enforced neighborhood search. ZIB-Report 07-28, Zuse Insti-
tute Berlin, 2007.

[7] Timo Berthold, Stefan Heinz, Ambros M. Gleixner, and Stefan Vigerske. On the computational
impact of MIQCP solver components. ZIB-Report 11-01, Zuse Institute Berlin, 2010.

[8] Timo Berthold, Stefan Heinz, Marco E. Liibbecke, Rolf H. Mohring, and Jens Schulz. A con-
straint integer programming approach for resource-constrained project scheduling. In Andrea Lodi,
Michela Milano, and Paolo Toth, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR 2010), volume 6140 of LNCS, pages
313-317, 2010.

[9] Timo Berthold, Stefan Heinz, and Marc E. Pfetsch. Nonlinear pseudo-boolean optimization: relax-
ation or propagation? In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing
(SAT 2009), number 5584 in LNCS, pages 441446, 2009.

[10] Timo Berthold, Stefan Heinz, and Stefan Vigerske. Extending a CIP framework to solve MIQCPs.
In Jon Lee and Sven Leyffer, editors, Mixed-integer nonlinear optimization: Algorithmic advances
and applications, IMA volumes in Mathematics and its Applications. Springer, to appear.

10

Timo Berthold et al.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

Andreas Bley, Ambros M. Gleixner, Thorsten Koch, and Stefan Vigerske. Comparing MIQCP
solvers to a specialised algorithm for mine production scheduling. ZIB-Report 09-32, Zuse Institute
Berlin, October 2009.

Pseudo Boolean Competition 2010. http://www.cril.univ-artois.fr/PB10/\

Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming A, 102(1):71-90, 2004.

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming B, 98(1-3):23-47,
2003.

Shubhashis Ghosh. DINS, a MIP improvement heuristic. In Matteo Fischetti and David P.
Williamson, editors, Integer Programming and Combinatorial Optimization (IPCO 2007), volume
4513 of LNCS, pages 310-323, 2007.

Zeynep Kiziltan, Andrea Lodi, Michela Milano, and Fabio Parisini. CP-based local branching. In
Christian Bessiere, editor, Principles and Practice of Constraint Programming (CP 2007), volume
4741 of LNCS, pages 847-855. Springer, 2007.

Hans Mittelmann. Mixed integer (QC)QP benchmark, May 2011. http://plato.asu.edu/
ftp/migp.html.

Rolf H. Méhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz. Solving project scheduling
problems by minimum cut computations. Management Science, 49(3):330-350, 2003.

Giacomo Nannicini, Pietro Belotti, and Leo Liberti. A local branching heuristic for MINLPs.
ArXiv, paper 0812.2188, 2009.

George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

Yossef Oren, Mario Kirschbaum, Thomas Popp, and Avishai Wool. Algebraic side-channel analysis
in the presence of errors. In Stefan Mangard and Frangois-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems (CHES 2010), volume 6225 of LNCS, pages 428-442, 2010.

Laurent Perron, Paul Shaw, and Vincent Furnon. Constraint integer programming: A new approach
tointegrate CP and MIP. In Mark Wallace, editor, Proc. of CP 2004, volume 3258 of LNCS, pages
468-481. Springer, 2004.

Gilles Pesant and Michel Gendreau. A constraint programming framework for local search meth-
ods. Journal of Heuristics, 5:255-279, 1999.

David Pisinger and Stefan Rgpke. Large neighborhood search. In Michel Gendreau and Jean-Yves
Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series in Operations
Research & Management Science, chapter 13, pages 399—420. Springer, 2nd edition, 2010.

PSPLib. Project Scheduling Problem Library. http://129.187.106.231/psplib/.

Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534-541, 2007.

SCIP. Solving Constraint Integer Programs. http://scip.zib.de.

Edward M.B. Smith and Constantinos C. Pantelides. A symbolic reformulation/spatial branch-
and-bound algorithm for the global optimization of nonconvex MINLPs. Computers & Chemical
Engineering, 23:457-478, 1999.

10

http://www.cril.univ-artois.fr/PB10/
http://plato.asu.edu/ftp/miqp.html
http://plato.asu.edu/ftp/miqp.html
http://129.187.106.231/psplib/
http://scip.zib.de

	Introduction
	Large Neighborhood Search for MIP
	Constraint Integer Programs
	Mixed-Integer Quadratically Constrained Programs
	Pseudo-Boolean Optimization
	Resource-Constrained Project Scheduling Problem

	Implementation in SCIP
	Computational Experiments
	Conclusion & Outlook

