
METASTABILITY IN REVERSIBLE DIFFUSION PROCESSES II.PRECISE ASYMPTOTICS FOR SMALL EIGENVALUESAnton Bovier12, V�eronique Gayrard34, Markus Klein56Abstract: We continue the analysis of the problem of metastability for reversible di�usionprocesses, initiated in [BEGK3], with a precise analysis of the low-lying spectrum of thegenerator. Recall that we are considering processes with generators of the form���+rF (�)ronRd or subsets ofRd, where F is a smooth function with �nitely many local minima. Here weconsider only the generic situation where the depths of all local minima are di�erent. We showthat in general the exponentially small part of the spectrum is given, up to multiplicativeerrors tending to one, by the eigenvalues of the classical capacity matrix of the array ofcapacitors made of balls of radius � centered at the positions of the local minima of F . Wealso get very precise uniform control on the corresponding eigenfunctions. Moreover, theseeigenvalues can be identi�ed with the same precision with the inverse mean metastable exittimes from each minimum. In [BEGK3] it was proven that these mean times are given, againup to multiplicative errors that tend to one, by the classical Eyring-Kramers formula.Keywords: Metastability, di�usion processes, spectral theory, potential theory, capacity, exittimesAMS Subject Classi�cation: 82C44, 60K351Weierstrass-Institut f�ur Angewandte Analysis und Stochastik, Mohrenstrasse 39, 10117 Berlin, andInstitut f�ur Mathematik, Technische Universit�at Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany.e-mail: bovier@wias-berlin.de2Work partially supported by the DFG Research Center FZT 86.3EPFL,FSB,SMA,IMB, 1015 Lausanne, Switzerlandpresent address: Departement de Math�ematiques et Statistiques, Universit�e de Montreal, CP 6128, succ.centre ville, Montreal QC H3C 3J7, Canada. email: gayrard@dms.umontreal.caon leave from: Centre de Physique Th�eorique, CNRS, Luminy, Case 907, F-13288 Marseille, Cedex 9, France.4Work partially supported by the FNS under contract No. FN-21-65267.015Institut f�ur Mathematik, Universit�at Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany.e-mail: mklein@math.uni-potsdam.de6Work partially supported by Sfb 288.22=february=2004; 10:30 1



21. Introduction.In this paper we continue the investigation of reversible di�usion processes initiated in[BEGK3]. Recall that we are interested in processes X�(t) that are given as solutions of anItô stochastic di�erential equationdX�(t) = �rF (X�(t))dt+p2�dW (t) (1:1)on a regular domain 
 � Rd, where the drift rF is generated by a potential function thatis suÆciently regular, and that both F (x) and krF (x)k tend to +1 at in�nity. We areinterested in the case when the function F (x) has several local minima. We always assumethat X� is killed on 
c if it exists.For a general introduction to the topic and its history we refer to the introduction of[BEGK3]. In that paper we have studied the so-called metastable exit times from attractorsof local minima of F and we have given a precise asymptotic estimate for the mean value ofthese times. These estimates were in turn based on precise estimates of certain Newtoniancapacities of sets containing small balls centered at the locations of the minima of F .In the present paper we turn to the investigation of the low-lying spectrum of the generatorsof the process de�ned by (1.1), i.e.L� � ��� +rF (x) � r (1:2)of these processes, with Dirichlet boundary conditions on 
c (if 
 6= Rd) of these processes.Under our assumptions below on F the spectrum of this operator will be discrete. Moreover,it is well-known that the spectrum of such operators has precisely one exponentially smalleigenvalue for each local minimum of the function F , and more or less rough estimates oftheir precise values are known [FW,Ma,Mi]. Wentzell [W2] and Freidlin and Wentzell [FW]obtain estimate for the exponential rate, i.e. they identify lim�#0 ��1 ln�i(�) using largedeviation methods. Sharper estimates, with multiplicative errors of order ��kd were obtainedfor principal eigenvalues by Holley, Kusuoka, and Strook [HKS] using a variational principle;these methods were extended to the full set of exponentially small eigenvalues by Miclo [Mi](see also [Ma]).Our purpose here is to get sharp estimates, i.e. we seek upper and lower bounds withmultiplicative errors that tend to one as � tends to zero. Such estimates are known inthe one-dimensional case (see e.g. [BuMa1,BuMa2] and references therein), whereas in the



3multi-dimensional case only heuristic results based on formal power series expansions of WKBtype exist. (see e.g. [Kolo] for an analysis of the situation). This is due to the fact that thestochastic tunnelling problem leads to a particularly degenerate form of the general tunnellingproblem in the context of Schr�odinger operators in which classical results [Si1,Si2,HS1-4] arenot immediately applicable. While the methods introduced in the third paper on quantummechanical tunneling by Hel�er and Sj�ostrand [HS3] should in principle allow to justify suchexpansions, their implementation seems rather tedious and has not been carried out to ourknowledge7.Here we will resort to a di�erent approach that combines ideas already suggested in [W1]with potential theoretic ideas. In fact, this approach was developed in [BEGK2] in thesetting of discrete Markov chains, where indeed many technical problems we will be facinghere disappear, and that may serve as a nice introduction.We will work under the same assumptions on F as in [BEGK3] throughout this paper,namely:Assumptions (H.1)(i) F 2 C3(
), 
 � Rd open and connected.(ii) If 
 is unbounded,(ii.1) lim infx!1 jrF (x)j =1, and(ii.2) lim infx!1 (jrF (x)j � 2�F (x)) = +1De�ne for any two sets, A;B � 
, the height of the saddle between A and B bybF (A;B) � inf!:!(0)2A;!(1)2B supt2[0;1]F (!(t)) (1:3)where the in�mum is over all continuous paths ! in 
.Remark: Condition (H.1) ensures that the resolvent of the generator L� is compact for �suÆciently small. Moreover, it implies that F has exponentially tight level sets in the sensethat for all a 2 R, Zy:F (y)�a e�F (y)=�dy � Ce�a=� (1:4)7After submission of this paper, B. Hel�er realised that under stronger regularity assumptions (C1)complete asymptotic expansions of the low-lying eigenvalues should be obtainable using methods developedin [HS4] in the context of the Witten complex. This was then carried out in [HN] in the case of a two-wellpotential, and the treatment of the general case is in progress [HKN].



4where C = C(a) <1 is uniform in � � 1.In the sequel the notion of saddle points of F will be crucial. The set of saddle points isintuitively the subset of the set G(A;B) = fz : F (z) = bF (A;B)g that cannot be avoided byany paths ! that try to stay as low as possible.In general we have to de�ne this set as follows:De�nition 1.1: Let P(A;B) denote the set of minimal paths from A to B,P(A;B) � f! 2 C([0; 1];
) : !(0) 2 A; !(1) 2 B; supt2[0;1]F (!(t)) = bF (A;B)g (1:5)Call a gate G(A;B) a minimal subset of G(A;B) with the property that all minimal pathsintersect G(A;B). Note that G(A;B) is in general not unique. Then the set of saddle pointsS(A;B) is the union over all gates G(A;B).To avoid complications that are not our main concern here, we will make the generalassumption that all saddle points we will deal with are non-degenerate in the sense thatAssumption (ND):(o) The set,M, of local minima of F is �nite and for any two local minima x; y 2 M, the setG(x; y) is uniquely de�ned and consists of a �nite set of isolated points z�i (x; y).(i) The Hessian matrix of F at all local minima xi 2 M and all saddle points z�i is non-degenerate (i.e. has only non zero-eigenvalues).When dealing with domains 
 with non-empty boundary we will encounter situationswhere saddle points in @
 are relevant. While this does not lead to serious problems per se,there appears rather naturally a great variety of cases that makes the formulation of generalresults rather cumbersome. We prefer to avoid having to discuss these issues by dealingexclusively with situations in which the boundary is never reached by the process, i.e. wemake the furtherAssumption (IB): For any sequence of points xi 2 
 such that limi"1 xi 2 @
, limi"1 F (xi) =+1.Our main interests are the distribution of stopping times�A � inf ft > 0jX(t) 2 Ag (1:6)for the process starting in one minimum, say x 2 M, of F , when A = B�(y) is a small ballof radius � around another minimum, y 2 M. It will actually become apparent that the



5precise choice of the hitting set is often not important, and that the problem is virtuallyequivalent to considering the escape from a suitably chosen neighborhood of x, provided thisneighborhood contains the relevant saddle points connecting x and y.Let us now state the main results of this paper.Given two disjoint closed sets A;D, we will denote by hA;D(x) the equilibrium potential,by eA;D(dy) the equilibrium measure, and by capA(D) the Newtonian capacity correspondingto the Dirichlet problem with boundary conditions one on A and zero on D. The precisede�nitions of these classical quantities (see e.g. [BluGet,Doo,Szni]) are recalled in Section 2of [BEGK3].Theorem 1.2: Assume that F has n local minima, x1; : : : ; xn and that for some � > 0 theminima xi of F can be labeled in such a way that, with Mk � fx1; : : : ; xkg and M0 � 
c,F (z�(xk;Mk�1))� F (xk) � mini<k (F (z�(xi;Mknxi))� F (xi))� � (1:7)holds for all k = 1; : : : ; n. We will set Bi � B�(xi) and Sk � [ki=1Bi, and hk(y) �hBk;Sk�1 (y). Assume moreover that all saddle points z�(xk;Mk�1) are unique, and thatthe Hessian of F is non-degenerate at all these saddle points and at all local minima. Thenthere exists Æ > 0 such that the n exponentially small eigenvalues �1 < �2 < � � � < �n of L�satisfy: �1 = 0 (1:8)and for k = 2; : : : ; n,�k = capBk (Sk�1)khkk22 (1 + O(e�Æ=�))= 1Exk �Sk�1 (1 +O(e�Æ=�))= j��1(z�(xk;Mk�1))j2� s det(r2F (xk))j det(r2F (z�(xk ;Mk�1)))je�[F (z�(xk;Mk�1))�F (xk)]=�� �1 +O ��1=2j ln �j�� (1:9)where ��1(z�) denotes the unique negative eigenvalue of the Hessian of F at the saddle pointz�.Remark: The theorem can be seen as containing three results: First, an asymptotically sharpidenti�cation of the exponentially small eigenvalues with the inverse mean exit times from



6local minima; this is a general feature of metastable systems (see e.g. [D1,D2,D3,GS,GM]for earlier results). Second, it relates these eigenvalues precisely to Newtonian capacities;this is the key di�erence from our results to e.g. the approach of Kolokoltsov and Makarov[KoMa1,KoM2,Kol], since it allows thirdly to get an explicit expression for the eigenvaluesin terms of the potential F .Remark: Conditions (1.7) state that \all valleys of F have di�erent depth", which is in somesense the generic situation. In this case a number of simpli�cations take place, in particular wedo not have to deal with degenerate eigenvalues. These conditions are completely analogousto the conditions imposed in [BEGK2]. Our general approach does, however, in principlealso allow to treat degenerate situations. We postpone the treatment of such cases to futurework.In the course of the proof of Theorem 1.2 we will also obtain rather detailed control onthe eigenfunctions of L� corresponding to its small eigenvalues.Theorem 1.3: Under the assumptions of Theorem 1.2, if �k denote the normalizedeigenfunction corresponding to the eigenvalue �k, then there exists Æ > 0 s.t.�k(y) = hB�(xk);Sk�1 (y)khB�(xk);Sk�1k2 (1 + O(e�Æ=�)) + O(e�Æ=�) (1:10)where hB�(xk);Sk�1(y) = Py ��B�(xk) < �Sk�1�.Remark: We give even more precise expressions for the eigenfunctions in the course of theproofs later on. Note that there is considerable interest in the knowledge of eigenfunctions inthe context of numerical schemes designed to recover metastable sets from the computation ofeigenfunctions. See in particular references [S,SFHD,HMS]. Let us emphasise that, using thebounds on equilibrium potentials obtained in Corollary 4.8 of [BEGK3], Theorem 1.3 impliesthat the eigenfunction corresponding to a Minimum xi is exponentially close to a constant(� eF (xi)=2�) in the connected component of the level set fy : F (y) < F (z�(xi;Mi�1))g thatcontains xi (i.e. in the valley below the saddle point that connects xi to the set that liesbelow xi), while it drops exponentially in the other connected components of the level setof this saddle; below the level of xi it is exponentially small in absolute terms. Note thatthis implies that the zeros of � are generally not in the neighborhood of the saddle points,but much closer to the minima in Mi�1. This fact was also observed in [HMS]. We wouldlike to stress that the fact that the eigenfunctions drop sharply at the saddle points makesthem very good indicators of the actual valley structure of the potential F , i.e. they become



7excellent approximations to the indicator functions of the metastable sets corresponding tothe metastable exit time 1=�i.Finally, it is almost a corollary from the results obtained above that metastable exit timesare asymptotically exponentially distributed, when appropriate non-degeneracy conditionsare met.Theorem 1.4: Assume that the Hessian of F is non-degenerate at all local minima andsaddle points. Let xi be a minimum of F and let D be any closed subset of Rd such that:(i) If Mi � fy1; : : : ; ykg � M enumerates all those minima of F such that F (yj) � F (xi),then [kj=1B�(yj) � D, and(ii) dist (z�(xi;Mi); D) � Æ > 0 for some Æ independent of �.Assume further that the conditions of Theorem 1.2 are satis�ed. Then, there exist Æ > 0independent of � and of t, such that for all t > 0,Pxi [�D > tExk �D] = �1 + O�e�Æ=��� e�t(1+O(e�Æ=�))+Xj>i O(e�Æ=�)e�t�jExi �D + O(1)e�tO(�d�1)Exi �D (1:11)The results of this paper together with those of [BEGK3] show that the methods toanalyse metastable behaviour in discrete Markov chains introduced in [BEGK1,BEGK2] canbe naturally extended to the treatment of continuous di�usion processes. In particular we seethat the metastable behaviour of continuous and discrete di�usions is virtually identical, andthat all results for the discrete chains treated in [BEGK1] carry over to the correspondingdi�usion approximations. In fact, our results in the di�usion case are sharper, since we wereable to identify the constants in the prefactors of exponentially small or large terms (weexpect, however, that with some extra work this improvement can also be carried over to thediscrete chains, at least under certain conditions). There are a number of generalizations ofthese results that can be investigated: First, one can naturally consider di�usion processes onmore general Riemannian manifolds. Second, one can consider extensions to locally in�nitelydivisible processes with mixed di�usion and jump components. Such extensions will requiresome extra work, but in principle our approach appears applicable, and qualitatively similarresults should be obtainable. Another potentially interesting generalization concerns non-reversible di�usion processes. Here the main diÆculty is the determination of the invariantmeasure, which our methods do not address at all. However, it is to be expected that at



8least in uniquely ergodic situations, some of our results can still be carried over. We hope toaddress these issues in future publications.The remainder of this paper is organized as follows: In Section 2 we prove an a prioriestimate on the spectrum of the generator when Dirichlet conditions are applied to smallneighborhoods of all the local minima of F . In Section 3 we then show that the eigenvaluesof the full generator are asymptotically close to those of the capacity matrix, which in turnare then evaluated in the generic situation. In the course of the proof we also identify theeigenvalues of the generator with the principle eigenvalues of appropriate Dirichlet operators.Finally, we derive from these results the exponential distribution of the mean exit times.Acknowledgements: We thank an anonymous referee of [BEGK2] for drawing our attentionto the paper [W2] by Wentzell. We also thank M. Eckho� for participation in an early stage ofthis work. We also thank the referees of this paper for numerous helpful remarks that greatlyhelped to improve the presentation of the paper. A. Bovier thanks the EPFL and V. Gayrardthe WIAS for hospitality and �nancial support that made this collaboration possible.2. A priori spectral estimates.Most of the preparatory background and necessary technical a priori estimates were in-troduced in [BEGK3] and will be imported from there. In this section we give an additionala priori estimate on the spectrum of certain Dirichlet operators associated to L�. More pre-cisely, we derive a priori lower bounds on principal eigenvalues and for the Dirichlet problemin (regular) open sets D � 
 � Rd with closure �D. We denote by @D the boundary of �D.We denote by ��(D) � ��1(D) the principal eigenvalue of the Dirichlet problem(L� � �)f(x) = 0; x 2 Df(x) = 0; x 2 Dc (2:1)where Dc � RdnD, and sometimes use the notation LDc� to indicate the Dirichlet operatorcorresponding to the problem (2.1).The following lemma is a classical result of Donsker and Varadhan [DV]:Lemma 2.1: The principal eigenvalue ��(D) satis�es��(D) � 1supx2D Ex�Dc (2:2)



9In the case when we consider di�usions on a compact set, Lemma 2.1 will yield a suÆcientlygood estimate. If D is unbounded, the supremum on the right may be in�nite and theestimate becomes useless. However, it is easy to modify the proof of Lemma 2.1 to yield animprovement.Lemma 2.2: Let �D denote the normalised eigenfunction corresponding to the principaleigenvalue of LD� .Let A � D be any compact set, Then��(D) � 1supx2A Ex�Dc  1� ZDnA dye�F (y)=�j�D(y)j2! (2:3)Moreover, for any Æ > 0, there exists a bounded set A � D (independent of �), such that��(D) � 1supx2A Ex�Dc(1� Æ) (2:4)Proof: Let w(x) denote the solution of the Dirichlet problemL�w(x) = 1; x 2 Dw(x) = 0; x 2 Dc (2:5)Note that (see e.g. Eq (2.22) of [BEGK3]) w(x) = Ex�Dc .ZD dxe�F (x)=��(x)(L��)(x) = ZD dxe�F (x)=�r�(x) � r�(x)= limh#0 h�2 ZD dxe�F (x)=� dXi=1 (�(x+ hei)� �(x))2 (2:6)Using that for any C > 0, ab � 12 (Ca2 + b2=C) with a = �(x + hei); b = �(x) and C =w(x)=w(x+ hei), one sees that(�(x+ hei)� �(x))2 � ��(x+ hei)2w(x+ hei) � �(x)2w(x) � (w(x+ hei)� w(x)) (2:7)Inserting this inequality into (2.6) yieldsZD dxe�F (x)=��(x)(L��)(x) � ZD dxe�F (x)=��2(x)w(x) (L�w)(x)= ZD dxe�F (x)=� �(x)w(x)�(x)� 1supx2A w(x) ZA dxe�F (x)=��2(x) (2:8)



10Choosing � as the normalized eigenfunction with maximal eigenvalue yields (2.3).We may assume without loss of generality that F (x) � 0 everywwhere. We now claimthat for any  > 0, Z dye�eF (y)=�j�D(y)j2 < C <1 (2:9)where eF (y) � minx2M (F (y)� F (x)). This clearly implies (2.4).To see this it is convenient to introduce v(y) � e�F (y)=2��D(y), which is the correspondingground state eigenfunction of the operatorH� � e�F (�)=2�L�eF (�)=2� = ��� + 14� jrF (x)j2 � 12�F (x) (2:10)which is a symmetric operator on L2(D; dy). The estimate (2.9) follows from a semi-classicalAgmon estimate for the ground-state eigenfunction, v, that can be found in [HS1]. In ourcase this yields Z dye(1�)eF (y)=�jv(y)j2 < C <1 (2:11)which in turn implies (2.9). This completes the proof of the lemma. }We will �rst establish that ��(D) is at most polynomially small in � if D does not containlocal minima, more precisely, de�neM� � fz 2 
j dist(z;M) � �g (2:12)Remark: The choice of balls of radius � is somewhat arbitrary, but works.Lemma 2.3: Assume that D \M� = ;. Then there is a �nite positive constant C suchthat supx2D Ex�Dc � C supx2D jfy : F (y) � F (x)gj ��d+1 (2:13)Proof: The starting point of the proof is the relation (which is an immediate consequenceof [BEGK3], Eq. (2.27))ZD dye�F (y)=�hB�(x);Dc(y) � infz2@B�(x) Ez �DccapB�(x)(Dc) (2:14)between mean time, equilibrium potential and capacities. It follows from the well knownrelation Ex�Dc = ZD GD(x; y)dy (2:15)



11between mean time and Green function that the Harnack inequality of [BEGK3], Lemma4.1, carries over to Ez �Dc , implying that, if � = c�, thensupz2@B�(x) Ez �Dc � C infz2@B�(x)Ez�Dc (2:16)Combining this with (2.14) gives us thatsupz2@B�(x) Ez �Dc � C RD dye�F (y)=�hB�(x);Dc(y)capB�(x)(Dc) (2:17)We now distinguish the regions fy : F (y) > F (x)g and fy : F (y) � F (x)g in the integral. Inthe former, we just use that hB�(x);Dc(y) � 1, while in the latter we invoke the upper boundfrom Proposition 4.3 in [BEGK3]. This givessupz2@B�(x) Ez �Dc � C Ry2D:F (y)>F (x) dye�F (y)=�capB�(x)(Dc)+ C 1capB�(x)(Dc) Zy2D:F (y)�F (x) dye�F (y)=� capB�(y)(B�(x))capB�(y)(Dc) (2:18)Using the upper and lower bounds on the capacities from Proposition 4.7 of [BEGK3], weget that supz2@B�(x) Ez �Dc � C 0���d+2e+F (x)=� Zy2D:F (y)>F (x) dye�F (y)=�+ C 0���d+2 Zy2D:F (y)�F (x) dy (2:19)By our assumption on F , the �rst integral is bounded by a constant times exp(�F (x)=�) andthe second is equal to the volume of the level set fF (y) � F (x)g. This implies the claimedbound.}Combining our results yields theCorollary 2.4: If D \ M� = ;, then there exists a �nite positive constant C < 1,independent of �, such that ��(D) � C�d�1 (2:20)We can generalize the bounds obtained so far to setsD containing some of the local minimaof F . I.e. let N �M be nonempty and letN� = �y 2 Rdj dist(y;N ) � �	 (2:21)



12Assume that D � N� and set A(x) = fy : hB�(x);DcnB�(x)(y) = maxy2M hB�(x);Dc nB�(x)(y)g.ThenLemma 2.5: Under the assumptions of lemma 2.2,1��(D) � Xi:xi2N� RA(xi) e�F (y)=�dycapB�(xi)(DnB�(xi)) (2:22)Proof: The proof is similar to that of the preceding corollary combined with the estimateon mean times given in Theorem 6.2 of [BEGK3]. We leave the details to the reader.}Remark: The key fact we need to extract from lemma 2.5 is that��(D) �� mini:xi2N e�[F (z�(xi;Mk)�F (xi)]=�] (2:23)3. Principal Dirichlet eigenvalues.It is a well-known fact that if F has n local minima, then L� has n eigenvalues that areexponentially small in � and that the next largest eigenvalue is of the order of a constant[FW,Kolo]. It is also known ([Kolo], Chapter 8, Proposition 2.2) that the eigenspace of theseeigenfunctions is exponentially close in the L2(exp(�F (y)=�)dy)-distance to the linear hullof the n indicator functions �i of the attractors of the minima xi under the deterministicdynamical system _y(t) = �rF (y(t)).In this section and the next we will derive a precise characterization of these eigenvaluesthat together with the estimates on capacities of [BEGK3] will ultimately yield the exactasymptotic formulae of Theorem 1.2. This is the analogue of Section 4 of [BEGK2] for thedi�usion case. Our approach can in to some extent be seen as an application of the ideas ofWentzell's remarkable paper from 1973 [W2]. As we will see, the application of these ideasis not as straightforward as in the discrete case, but in principle very similar.Before we turn to the details of this construction, it is useful to explain the general strategy.Let us now consider a set of disjoint compact sets Bi � B�(xi), i = 1; : : : ; k. Let ��kdenote the principal eigenvalue of the Dirichlet operator L� with Dirichlet conditions on@Sk � [ki=1@Bi (and on @
, if this is not empty). Consider, for � < ��k, the solution of the



13Dirichlet problem (L� � �)f�(x) = 0; x 2 
n@Skf�(x) = �(x); x 2 @Skf�(x) = 0; x 2 @
 (3:1)(i.e. we consider the Dirichlet problems in the exterior and the interior of the balls simul-taneously; note that the principal eigenvalue of L� within a ball will always be larger than��k and so plays no rôle). In the sequel when specifying the Dirichlet problems the condi-tions vanishing of the solution on the boundary of 
 will be understood and not mentionedanymore. The basic idea is now to construct an eigenfunction of the full operator L� as asolution of the problem (3.1) with suitably chosen �. Indeed, if � is an eigenvalue of L� andif we choose �(x) as the eigenfunction corresponding to this eigenvalue, then f�(x) is equalto � everywhere. To see this, note that since �(x) = f�(x) on @Sk, we have that for x 2 Sck(L� � �)Sk(f� � �)(x) = (L� � �)(f� � �)(x) = 0 (3:2)But since � is not in the spectrum of LSk� , this implies that f�(x) = �(x) on Sck as well. Thesame argument applies in the interior of Sk This means that � < ��k is an eigenvalue of L� ifand only if we can �nd a function � on @Sk, such that the solution of the Dirichlet problem(3.1) is actually an eigenfunction of L� with eigenvalue �. In other words, any eigenfunctioncorresponding to eigenvalues below the principal Dirichlet eigenvalue can be represented assolution of (3.1).Thus the eigenvalue problem reduces to �nding out for which values of � for suitable� on the boundaries of Bi, (L� � �)f� = 0 everywhere. In fact, (L� � �)f� is in general ameasure concentrated on the surface @Sk; demanding that this surface measure be zero yieldsin general an integral equation for �(x) on @Sk, which is not particularly easy to handle. Inthe case of discrete Markov processes, we have considered a very similar problem in [BEGK2].There, the balls Bi were, however, simply the points xi. The measure (L���)f� was then asimple measure on the �nite set Mk, and the boundary condition reduces to the k numbers�(xi), and the integral equation was reduced to a simple linear equation for the unknownvector �(xi); i = 1; : : : ; k. The condition for � to be an eigenvalue was thus simply thata certain determinant vanishes. It would be more than nice if we could reduce ourselvesto a similarly simple condition in the present case. Indeed this would be so, if we knewbeforehand that �(x) is constant on each surface @Bi. While this cannot be truly the case,if � is small we may expect that � varies little. In that case, we could, as we shall see, useperturbative arguments to arrive at the desired conclusion. Unfortunately, to obtain such



14control on eigenfunctions looks rather diÆcult. While the Harnack- and H�older inequalitieswill give us the desired control if we know that the eigenfunction does not change sign in asuitable neighborhood of the minimum, one cannot exclude that some minima are close tosuch zeros. We will see, however, that eigenfunctions do not change sign near a minimum,unless they are very small there. This will be enough to carry through our arguments.We begin this program in this section with the somewhat simpler problem of the compu-tation of the principal eigenvalues in domains D � 
. The main application will be laterto the case where D is 
 with some small balls around local minima of F removed. Thisproblem is considerably simpler because principle eigenfunctions are positive.Regularity properties of harmonic functions. We �rst state a simple application of theHarnack- and H�older inequalities (see [GT] , Corollaries 9.25 and 9.24) that we have statedas Lemmata 4.1 and 4.2 in [BEGK3].Lemma 3.1: Assume that x is a local minimum of F . Let � be a positive strong solutionof (L���)� = 0, j�j � 1, on a ball B4p�(x). Then there exists a constant C <1 and � > 0,both independent of � such thatoscy2B�(x)�(y) � C��=2 miny2B�(x)�(x) (3:3)Proof: We can use Lemmata 4.1 and 4.2 stated in [BEGK3] with � = � = �,  = 1, c = �,and � = ��2 supy2B4p�(x) krF (y)k21 � const:��1 (3:4)Then, with R = 2p�, we obtain �rst from Lemma 4.2 thatsupy2B2p�(x)�(y) � C infy2B2p�(x)�(y) (3:5)and then from Lemma 4.1 thatoscy2B�(x)�(x) � C��=2 supy2B2p�(x)�(y)�1 +p�d+1j�j� (3:6)This implies the lemma if � is not too large.}Principal eigenvalues revisited. We will now improve on the estimates on principaleigenfunctions ��(D) obtained in Section 2 by showing that in the case when D contains alocal minimum of F , these estimates are essentially exact.



15Proposition 3.2: Assume that D contains l � 1 local minima of the function F and thatthere is a single minimum x 2 D that realizesF (z�(x;Dc))� F (x) = lmaxi=1 [F (z�(xi; Dc))� F (xi)] (3:7)We write B � B�(x). Then there exists � > 0; C < 1; Æ > 0, independent of �, such thatprincipal eigenvalue ��(D) of the Dirichlet problem on D satis�escapB(Dc)khB;Dck22 (1� C��=2)(1� e�Æ=�) � ��(D) � capB(Dc)khB;Dck22 (1 + C��=2)(1 + e�Æ=�) (3:8)where here and henceforth k�k2 denotes the L2 norm with respect to the measure e�F (y)=�dy.Proof: Set D0 = DnB. Then we know by Lemma 2.5 that there exists Æ > 0 such that��(D0) � e�[F (z�(x;Dc))�F (x)]=�eÆ=� (3:9)while we know that ��(D) < ��(D0) (and expect �� � e�[F (z�(x;Dc))�F (x)]=e, i.e. much smaller).By the general philosophy outlined above, we know that the principal eigenfunction can berepresented as the solution of the Dirichlet problem (both inside B and outside B)(L� � �)f�(y) = 0; y 2 Dn@Bf�(y) = �D(y); y 2 @Bf�(y) = 0; y 2 Dc (3:10)where the boundary conditions �D are given by the actual principal eigenfunction. We willassume that dist(x;Dc) � Æ > 0, independent of �. Then B4p�(x) � D, and since �D is theprincipal eigenfunction, it may be chosen positive on D. Therefore Lemma 3.1 applies andshows that infy2@B �D(y) � c � supy2@B �D(y) � (1 + C��=2)c (3:11)We will normalize the eigenfunction s.t. c = 1, Thus we can write f�(x) = h�B;Dc(x)+ �(x),where h�B;Dc � h� is the �-equilibrium potential (see [BEGK3], Chapter 2) that solves(L� � �)h�(y) = 0; y 2 Dn@Bh�(y) = 1; y 2 @Bh�(y) = 0; y 2 Dc (3:12)while  � solves (L� � �) �(y) = 0; y 2 Dn@B �(y) = �D(y)� 1; y 2 @B �(y) = 0; y 2 Dc (3:13)



16 We want that (L� � �)f�(x) = 0 on all of D. Here we have to interpret (L� � �)f� as asurface measure on @B. I.e., if g is a smooth test function that vanishes on Dc,ZD dye�F (y)=�g(y)(L�� �)f�(y) � ZD dye�F (y)=�f�(y)(L� � �)f�(y)g(y)= ZDnB dye�F (y)=�f�(y)(L� � �)g(y) + ZintB dye�F (y)=�f�(y)(L� � �)g(y)= � Z@B e�F (y)=� �g(y)@n(y)f�(y)� f�(y)@n(y)g(y)�d�B(y)+ � Z@B e�F (y)=� �g(y)@�n(y)f�(y)� f�(y)@�n(y)g(y)�d�B(y)= � Z@B e�F (y)=� �g(y)@n(y)f�(y) + g(y)@�n(y)f�(y)�d�B(y) (3:14)where d�B(y) denotes the Euclidean surface measure on @B, and @�n(y) denote the normalderivative at y 2 @B from the exterior and interior of B, respectively. Thus we can identifydye�F (y)=�(L� � �)f�(y) = �e�F (y)=�(@n(y)f�(y) + @�n(y)f�(y))d�B(y) (3:15)To get control on ��, we can ask at least that the total mass of this measure on @B vanishes,i.e. that 0 = Z@B e�F (y)=�(@n(y)f�(y) + @�n(y)f�(y))d�B(y) (3:16)To evaluate this expression it will be convenient to observe that on @B, hB;Dc(y) = 1 fory 2 @B (where hB;Dc � h�=0B;Dc is the Newtonian potential (see [BEGK3], Chapter 2)).Moreover, on B, hB;Dc(y) � 1, so that @�n(y)hB;Dc(y) vanishes on @B. Using these factstogether with Green's second identity (see Eq. (2.8) in [BEGK3]), we get from (3.15) thecondition0 = Z@B e�F (y)=�@n(y)hB;Dc(y)f�(y)� �� ZD dye�F (y)=�hB;Dc(y)f�(y)= Z@B e�F (y)=�@n(y)hB;Dc(y)� �� ZD dye�F (y)=�hB;Dc(y)h�B;Dc(y)+ Z@B e�F (y)=�@n(y)hB;Dc(y) �(y)� �� ZD dye�F (y)=�hB;Dc(y) �(y) (3:17)(Note that the derivative @n(y) is in the direction of the interior of B). The two termsinvolving  � will be naturally treated as error terms. In fact, since @n(y)hB;Dc(y) > 0, usingLemma 3.1, we get that0 � Z@B e�F (y)=�@n(y)hB;Dc(y) �(y) � C��=2 Z@B e�F (y)=�@n(y)hB;Dc(y) (3:18)



17If we de�ne Æ � =  � �  0, we see that Æ � solves the Dirichlet problem(L� � �)Æ �(y) = � 0(y); y 2 Dn@BÆ �(y) = 0; y 2 @BÆ �(y) = 0; y 2 Dc (3:19)and thus Æ �(y) = �(LDc[B� � �)�1 0(y) (3:20)and so kÆ �k2 � ���(D0)� �k 0k2 (3:21)By the same argument we also have thatkh�B;Dc � hB;Dck2 � ���(D0)� �khB;Dck2 (3:22)On the other hand, using the Poisson kernel representation of  0, 0(z) = �� Z@B(�D(y)� 1)@n(y)GDnB(x; y)d�B(y) (3:23)whereGDnB(x; y) denotes the Green's function for the Dirichlet problem inDnB (see [BEGK3],Chapter 2). Since the normal derivative of the Green's function is negative on @B, we getthat 0 �  0(z) � C��=2hB;Dc(z) (3:24)With � Z@B e�F (y)=�@n(y)hB;Dc(y) = capB(Dc) (3:25)(3.17) implies that0 � capB(Dc)� �khB;Dck22(1� C��=2)(1� �=(��(D0)� �))0 � capB(Dc)(1 + C��=2)� �khB;Dk22 (3:26)This implies the claimed bound on ��(D). Note that, while we have only used a necessarycondition for ��(D), the fact that there must be such an eigenvalue implies that it actuallylies in the bounds given by (3.26). }Remark: In the case when several of the minima within D satisfy (3.7) (i.e. if D containsseveral minima that are \equally deep"), one has to remove balls B�(xi) for each of theseminima. Then one may proceed as before. The only di�erence is that now there appears one



18value ci for each of the minima that is yet to be determined. One sees that in such a case��(D) is determined by a variational formula��(D) = minc1;:::;cl�0 RD e�F (y)=�krh(c1; : : : ; cl)k22kh(c1; : : : ; cl)k22 (1 + O(��=2; e�Æ=�)) (3:27)where L�h(x1; : : : ; cl)(y) = 0; y 2 Dn [li=1 @B�(xi)h(c1; : : : ; cl)(y) = ci; y 2 @B�(xi) (3:28)It is easy to see that the result di�ers only by a constant factor from that in the non-degeneratecase stated in the proposition.Uniform estimates on principal eigenfunctions. The proof of Proposition 3.2 hasalready provided us with an approximation for the principal eigenfunction, namely hB;Dc .We have seen that in L2 this approximation is good on the order ��=2. We will now showthat this approximation is also uniformly good.Proposition 3.3: Under the hypothesis of Proposition 3.2, the principal eigenfunction,�D, of LDc� , normalized such that infy2@B �D = 1, satis�eshB;Dc(y) � �D(y) � hB;Dc(y)(1 + C��=2)(1 + e�Æ=�) (3:29)Proof: Let us �rst assume that D is bounded. Set Æf� = f� � f0. Then Æf� satis�es theDirichlet problem L�Æf�(y) = � �(y); y 2 Dn@BÆf�(y) = 0; y 2 @BÆf�(y) = 0; y 2 Dc (3:30)Thus we can write Æf�(y)hB;Dc(y) = ZDnB 1hB;Dc(y)GDnB(y; z)hB;Dc(z) Æf�(z)hB;Dc(z) (3:31)Assume that M � supy2DnB f�(y)hB;Dc(y) <1. Then (3.31) together with (3.24) implies thatM � 1 + C��=2 + �M supy2DnB ZDnB 1hB;Dc(y)GDnB(y; z)hB;Dc(z)= 1 + C��=2 + �M supy2DnB Ey [�B j�B � �Dc ] (3:32)Using the representation of the conditional mean time from Proposition 6.1 of [BEGK3], oneshows that supy2DnB Ey [�B j�B � �Dc ] = 1=��(DnB) (3:33)



19so that M � 1 + C��=21� ��(D)=��(DnB) � (1 + C��=2)(1 + e�Æ=�) (3:34)Since by construction hB;Dc(y) � �D(y), the assertion of the proposition follows.It remains to justify the assumption M <1. However, this is easy. First, �D is boundedand C2(D). Thus, �D(y)hB;Dc (y) may only diverge when hB;Dc(y) # 0. However, since hB;Dc ,is harmonic and non-negative on the boundary, it is strictly positive on D by the strongmaximum principle. Thus its explosion can occur only at the boundary of D where hB;Dc(y)tends to zero. Moreover, its normal derivative on @D is strictly (and since �D is compact,uniformly) positive (see e.g. Section 5, Proposition 2.2 of [Tay]). Therefore �D(y)hB;Dc (y) remainsbounded also when y ! @D.Therefore the proposition is proven if �D is compact.In the non-compact case, we can obtain a similar result for the supremum over compactsubsets � � Rd, using the rapid decay of the Green's function in regions where F (y) is gettingvery large. }4.Exponentially small eigenvalues and their eigenfunctions.We now generalise the analysis from the previous section to the construction of all smalleigenvalues of L�. To do this we need �rst to establish some a priori estimates on the behaviourof eigenfunctions near the local minima of F .A priori estimates on eigenfunctions near local minima. For the analysis of harmonicfunctions that are not necessarily positive, we need an application of an estimate for sub-harmonic functions that allows to relate the oscillation to the L2 norm.Lemma 4.1: Let � be a strong solution of (L� � �)� = 0 on a ball Bcp�(x). Then thereexist constants C1, independent of �, such thatoscBcp�� � C��d=4 ZB2cp� j�(x)j2dx!1=2 (4:1)Proof: This is just a specialisation of Theorem 9.20 in [GT] (that gives upper bounds onthe supremum for sub-harmonic functions in terms of the p-norms) to our case, choosing theballs involved in such a way that the constants are uniform in �. }



20 Our aim is now to show that in the vicinity of order p�, eigenfunctions corresponding tothe exponentially small eigenvalues of L� are have either a constant sign, or are irrelevantlysmall. That this should be the case is suggested by the following result that we cite (inslightly adapted form) from [Kolo] (Chapter 8, Proposition 2.2):Proposition 4.2:Let � be a normalised eigenfunction of L� corresponding to one of thejMj smallest eigenvalues. Let  < ̂ � minx;y2M � bF (x; y)� F (y)�. Let Di be the set ofpoints in y 2 
 such that the solution of the di�erential equation ddty(t) = �rF (y(t)) withinitial condition y(0) = y converges to xi 2 M. Then, there exist constants ci��Xi ci1IDi2;�� � C exp(�=�) (4:2)for some constant C � C <1.Remark: The proposition is stated in [Kolo] for smooth V , but it is easy to see that theproof carries through for V 2 C�(
).Unfortunately this estimate is not quite enough to conclude that � is not changing signnear any minimum. We will show that this is the case if the contribution of � comingfrom a neighborhood of a given minimum is signi�cant. Let us set for D � 
, kfk2;��;D ��RD jf(x)j2��(dx)�1=2.For a given eigenfunction � let us de�ne the setJ � fj : k�k2;��;Dj � exp(�=2�) (4:3)Lemma 4.3: If � is one of the eigenfunctions of Lemma 4.2, j 2 J, then there exists aconstant cj and a �nite, �-independent constant C and positive, �-independent constant �,such that for all x 2 Bp�(xj), j�(x)� cj j � C��=2cj.Proof: We will �rst show that the weighted L2 estimate on the deviation of � from a constantimplies a local unweighted L2 estimate on balls of radius r � p� near the minima xj , j 2 J .Note �rst that from (4.2) it follows thatk�� cjk2;��;Dj � C exp(�=�) (4:4)Set b�(x) � �(x)k�k2;��;Dj , and ĉj � cjk�k2;��;Dj . Then due to the de�nition of J , we get that forthis locally normalized function the estimatekb�� ĉjk2;��;Dj � C exp(�=2�) (4:5)



21Note that this estimate is now unchanged if we add a constant to F (x), so that we canpretend for the moment that F (xi) = 0. Let R > 0 such that BR(xj) 2 Dj. Since xj isa quadratic minimum, there exists a �nite positive constant, b, such that, for x 2 BR(xj),F (x) � b(x� xj)2. Hence (4.5) implies in particular thatZBR(xj)(b�(x)� ĉj)2dx � CebR2=� exp(�=2�) (4:6)Note that also ZBR(xj) jb�(x)j2dx � ebR2=�kb�k2;��;Dj = ebR2=� (4:7)Now let x 2 Bp�(xj). Then Lemma 4.1 implies thatoscB2p� b� � C��d=4 (4:8)for some (new) �nite, �-independent constant C. Now we can use the H�older estimate (Corol-lary 9.24 in [GT] as specialized in Lemma 4.1 in [BEGK3], to obtain that for r < p�,oscBr b� � C��d=4 � r�1=2�� (4:9)for a new constant and � > 0, independent of �. If we chose r � � d4�+1, we can achieve thatoscBr(x) � C��=2 < ĉi=2, if � is small enough. But by the estimate (4.6), then b� must beclose to cj , uniformly on Br(x). Since this argument holds for all x 2 Bp�(xj), we have thatjb�� ĉj j � C��=2 in this ball.}Remark: We will see later that this estimate grossly overestimates the possible uctuationsof �.Lemma 4.1 is also the appropriate tool to show that near the minima where the L2 normis very small, a similar estimate holds uniformly. NamelyLemma 4.4: Let xi 2M, i 62 J. Thensupx2Bp�(xj) j�(x)j � C��d=2e�=2�e+F (xi)=2� (4:10)Proof: By Lemma 4.1, supx2Bp�(xj) j�(x)j � C��d=4k�k2;dx;B2p�(xj)� C 0��d=4k�k2;��;B2p�(xj)� C 0��d=4e+F (xi)=2�k�k2;��;Dj� C 0��d=4e�=2�e+F (xi)=2� (4:11)



22which proves the lemma. }Characterisation of the eigenvalues. Let us now order all minima xi of F in such a waythat F (z�(xi+1;Mi))� F (xi+1) � F (z�(xi;Mi�1))� F (xi) (4:12)for i = 1; : : : ; n � 1, where Mi = fx1; : : : ; xig. We put moreover M0 � 
c. We alsoset Bi � B�(xi) and Si = [ij=1Bi. Note that considerable simpli�cations occur when allinequalities in (4.12) are strict, and we will only consider this case here.Suppose that we want to compute eigenvalues below ��(
nSk) � ��k. We know that if ��is an eigenfunction with � < ��k, then it can be represented as the solution of the Dirichletproblem (L� � �)f�(y) = 0; y 2 
n@Skf�(y) = ��(y); y 2 @Sk (4:13)Thus, as in the analysis of principal eigenvalues above, the condition on � will be the existenceof a non-trivial �� on @Sk such that the surface measuredye�F (y)=�(L� � �)f�(y) = e�F (y)=�(@n(y)f�(y) + @�n(y)f�(y))d�Sk(y) (4:14)vanishes. A necessary condition for this to happen is of course the vanishing of the total masson each of the surfaces @Bi, i � k, i.e.Z@Bi e�F (y)=�(@n(y)f�(y) + @�n(y)f�(y))d�Sk(y) = 0 (4:15)In view of Lemmata 4.3 and 4.4 we have the following dichotomy: Let ci = infy2Bi ��(y).Then either(i) supy2Bi j��(y)=ci � 1j � C��=2, or(ii) supy2Bi j��(y) � C��d=4e�=2�e+F (xi)=2�We now consider all possible cases: Let J � f1; : : : ; kg be the set of indices where (i) holds,and Jc � f1; : : : ; kgn. Given such a partition, we setf� =Xj2J cj �h�Bj ;SknBj +  �j � + Xi2Jc  �i (4:16)where the h�j � h�Bj ;SknBj are the �-equilibrium potentials (see [BEGK3], Section 2), i.e.solutions of (L� � �)hj = O with boundary conditions 1 on @Bj and 0 on @(SknBj).



23Then  �j satis�es, for j 2 J(L� � �) �j (y) = 0; y 2 
n@Sk �j (y) = ��(y)=cj � 1; y 2 @Bj �j (y) = 0; y 2 @Bi; i 6= j (4:17)and for j 2 Jc (L� � �) �j (y) = 0; y 2 
n@Sk �j (y) = ��(y); y 2 @Bj �j (y) = 0; y 2 @Bi; i 6= j (4:18)We now proceed as in the analysis of principle eigenvalues, i.e. we write as necessarycondition for � to be an eigenvalue that for all i = 1; : : : ; k,0 = Z@Bi e�F (y)=�hi(y) �@n(y)f�(y) + @�n(y)f�(y)�d�@Sk (y)= Z@Sk e�F (y)=�@n(y)hi(y)f�(y)d�@Sk(y)� �� Z dye�F (y)=�hi(y)f�(y)=Xj2J cj "Z@Bj e�F (y)=�@n(y)hi(y)(1+  �j (y))d�@Sk(y)� �� Z dye�F (y)=�hi(y)(h�j (y) +  �j (y))#+ Xj2Jc �Z@Bl e�F (y)=�@n(y)hi(y) �(y)d�@Sk(y)� �� Z dye�F (y)=�hi(y) �j (y)� (4:19)Note that by the bounds (i) and (ii), we have that for j 2 J�����Z@Bj e�F (y)=�@n(y)hi(y) �j (y)d�@Sk(y)����� � C��=2 �����Z@Bj e�F (y)=�@n(y)hi(y)d�@Sk(y)����� (4:20)and for j 2 Jc,�����Z@Bj e�F (y)=�@n(y)hi(y) �j (y)d�@Sk(y)������ C��d=4e�=2�eF (xj)=2� �����Z@Bj e�F (y)=�@n(y)hi(y)d�@Sk(y)����� (4:21)



24At this point it is convenient to realize that Green's �rst identity and the fact that the hi areharmonic, implies that, for i 6= j,�����Z@Bj e�F (y)=�@n(y)hi(y)d�Bj (y)����� = �����Z@Bj e�F (y)=�hj(y)@n(y)hi(y)d�Bj (y)�����= ��1 ����ZextSk dye�F (y)=� (rhj(y);rhi(y))���� � ��1qcapBi(SknBi)capBj (SknBj) (4:22)where the last inequality uses the Cauchy-Schwarz inequality. Thus, for j 2 Jni,�����Z@Bj e�F (y)=�@n(y)hi(y) �j d�@Sk(y)����� � C��=2��1qcapBi(SknBi)capBj (SknBj) (4:23)and for j 2 Jcni�����Z@Bj e�F (y)=�@n(y)hi(y) �j d�@Sk (y)����� � C��d=4e�=2�eF (xj)=2���1qcapBi(SknBi)capBj (SknBj)(4:24)For the diagonal terms i = j 2 J , we have In particular, in the case when i = j, this simpli�esto �����Z@Bj e�F (y)=�@n(y)hi(y) �j d�@Sk (y)����� � C��=2capBj (SknBj) (4:25)For the remaining terms involving  � in (4.19), we obtain in complete analogy to thederivation of the bounds (3.20) and (3.21) that for j 2 JZ dye�F (y)=�hi(y)(h�j (y)� hj(y) +  �j (y)) = O(��=2)(1 + O(e�Æ=�)) Z dye�F (y)=�hi(y)hj(y)(4:26)and for j 2 JZ dye�F (y)=�hi(y) �j (y) = O���d=4e�=2�eF (xj)=2�� Z dye�F (y)=�hi(y)hj(y) (4:27)To control all o�-diagonal terms, we still need to show that the normalized functions hiand hj are almost orthogonal.Lemma 4.5:(i) There is a constant C <1 such that, for i 6= j,Z dye�F (y)=�hj(y)hi(y) � C��(d+1)=2min �e�bF (xi;SknBi)=�; e�bF (xj ;SknBj)=�� (4:28)



25(ii) For all i, Z dye�F (y)=�h2j (y) � C�d=2e�F (xj)=� (4:29)Proof: We �rst prove (i). For i 6= j,Z dye�F (y)=�hj(y)hi(y) = Zy:F (y)�max(bF (xi;SknBi);bF (xj;SknBj)) dye�F (y)=�hj(y)hi(y)+ Zy:F (y)>max(bF (xi;SknBi);bF (xj;SknBj)) dye�F (y)=�hj(y)hi(y) (4:30)In the second integral we just use that hi(y) � 1; by our general assumptions on F , thisgives a bound Ce�max(bF (xi;SknBi);bF (xj ;SknBj))=�. In the �rst integral we use the bounds onthe equilibrium potential from Corollary 4.8 of [BEGK3]. Note that for any y, at most one ofthe factors hi(y) or hj(y) can be close to one. Thus even the roughest estimate yields that8Zy:F (y)�max(bF (xi;SknBi);bF (xj ;SknBj)) dye�F (y)=�hj(y)hi(y)� Zy:F (y)�max(bF (xi;SknBi);bF (xj ;SknBj)) dye�F (y)=�� C��1=2e�max(bF (xi;SknBi);bF (xj;SknBj))� C��1=2jfy : F (y) � max( bF (xi;SknBi); bF (xj;SknBj))gj� e�max(bF (xi;SknBi);bF (xj ;SknBj))=� (4:31)Combining this upper bound with the lower bound we arrive at the assertion (i).To prove (ii), note thatZ dye�F (y)=�h2j (y) � ZBp�(xj) dye�F (y)=� �1� C��1=2e�[F (z�(xj;SknBj ))]=��2= C�d=2e�F (xj)=� (4:32)This concludes the proof of the lemma.}Let us de�ne the capacity matrix9 C with elementsCij � C(k)ij � � Z@Bj e�F (y)=�hj(y)@n(y)hi(y)d�Bj (y)8See the proof of (4.55) for more details.9The matrix C is a classical object in electrostatics, the diagonal elements being called capacities, and theo�-diagonal ones coeÆcients of induction [Jack]. The o�-diagonal coeÆcients represent the charge induced inthe i-th ball when the j-th has potential one and all others are at potential zero.



26and its normalized version Kij � K(k)ij � C(k)ijkhik2khjk2 (4:33)Note that this matrix is symmetric and satis�es, by (4.22),Kij �pKiiKjj (4:34)If we introduce the matricesAij � � R@Bj e�F (y)=�@n(y)hi(y) �j (y)d�@Sk(y)khik2khjk2 (4:35)Bij � (1� Æij)R dye�F (y)=�hi(y)(h�j (y) +  �j (y))khik2khjk2 ; if i 2 JBij � (1� Æij)R dye�F (y)=�hi(y) �j (y)khik2khjk2 ; if j 2 Jc (4:36)and Dij � Æij R dye�F (y)=�hj(y)(h�j (y)� hj(y) +  �j )khjk22 (4:37)Then the conditions (4.19) for � can be written as0 =Xj2J ĉj (Kij � �Æij +Aij � �(Dij +Bij)) + Xj2Jc khjk(Aij + �Bij) (4:38)where ĉj = khjk2cj .We can now collect the estimates on these matrix elements:Lemma 4.6: The following bounds hold:(i) For i 6= j 2 J jBij j � C��dpKiiKjj (4:39)jDjjj � C��=2 (4:40)and for all i; j, jAij j � jKijjC��=2 (4:41)(ii) For i 6= j 2 Jc khjk2jAijj � C��3d=4jKijj (4:42)and khjk2jBij j � C��de�=�pKiiKjj (4:43)



27We collect the results obtained so far asTheorem 4.7: Let Sk � [ki=1B�(xi) and let ��k denote the principal eigenvalue of theoperator L� with Dirichlet conditions on @Sk (and @
). Then a number � < ��k may be aneigenvalue of the operator L�, if there exists a nonempty set J � f1; : : : ; kg, constants cĉj,j 2 J, s.t. Pj2J ĉ2J = 1, and numbers Aij ; Bij ; Djj satisfying the constraints given in Lemma4.6, such that for all i 2 J, Eq.(4.38) holds.One would expect that Eq. (4.38) has a solution only when � is close to an eigenvalue ofthe matrix K, and that indeed all eigenvalues of that matrix are close to the eigenvalues ofL�. We will not prove this directly. In fact, we will restrict our attention in this article tothe non-degenerate situation when all \depths" of the valleys xi are distinct, i.e. when forall i < k the inequalities (4.12) are strict.Lemma 4.8: Let Kij be the normalized capacity matrix and assume thatmaxi<k Kii � e�Æ=�Kkk (4:44)Then, J � k, and the largest eigenvalue, �k, of K satis�es�k = Kkk(1 +O(e�Æ=2�)) (4:45)while all other eigenvalues are smaller than Ce�Æ=��k. Moreover, the eigenvector, v =(v1; : : : ; vk), corresponding to the largest eigenvalues normalized s.t. vk = 1 satis�es jvij �Ce�Æ=�, for i < k.Proof: This is a simple perturbation argument. Note that we can writeK = K̂+ �K (4:46)where K̂ij = KkkÆjkÆik . Now we estimate the norm of �K as in the proof of Lemma 4.5.Now recall that jKjij � KiiKjj (4:47)Whence by assumption (4.44),k �Kk � Kkkpe�Æ=�k + e�Æ2=�2k2 (4:48)



28Since obviously K̂ has one eigenvalue Kkk with the obvious eigenvector and all other eigen-values are zero, the announced result follows from standard perturbation theory. }Since Kkk = capBk(Sk�1)khkk22 � ��k�1, this is precisely the value we expect.Corollary 4.9: Under the hypothesis (4.44), if there exists an eigenvalue �k of L� in theinterval (��k; ��k�1], then(i) �k = capBk(Sk�1)=khkk22 �1 +O(��=2; e�Æ=�)� (4:49)(ii) The eigenvalue �k is simple and the corresponding eigenfunction f�k can be written as��k(y) = hk(y)khkk2 (1 +O(��=2)) + k�1Xj=1 dj(y) hj(y)khjk2 (4:50)where jdj(y)j � e�Æ=� for some Æ > 0 (uniformly on compact subsets if 
 is unbounded) .Proof: First, if J 6� k, and if �k is as assumed, then in each of the jJ j equations thereis one term (Kii + Aii � �)ĉi � Kkkd̂i while all other terms are of order at most of orderexp(�Æ=2�)jKkkjcj. Thus no normalized solution ĉ can be found. Assume thus that k 2 J .Considering all equations with i 6= k, the same argument as before shows that jĉij � Ce�Æ=2�.Looking instead at the equation number k, since now ĉk � 1, it implies thatj(Kkk +Akk � �k)j � CjKkkje�Æ=���=2 (4:51)which yields claim (i).As we have just seen that a solution of (4.38) with ĉk = 1 must satisfy jĉjj � e�Æ=� for allj 6= k, by (4.16), this implies that��k(y) = h�k(y) + ��k(y)khkk2 + Xj2Jnk ĉj h�j (y) + ��k(y)khjk2 (4:52)Using the same arguments as in the proof of Proposition 3.3, and the bounds on �� � cj onthe boundaries @Bj , we get that for j 2 Jj��j (y)� hj(y)jkhjk2 � C��=2 hj(y)khjk2 +Xl2Jj capBl(Bj)khlk2khjk2 hl(y)khlk2 � C��=2 hj(y)khjk2 +Xl2Jj e�Æ=� hl(y)khlk2(4:53)



29Combining these estimates we arrive at (4.50). Note that this �nal estimate does not actuallydepend on the choice of J . Since it is impossible that two functions satisfying (4.50) areorthogonal, it follows that �k is a simple eigenvalue. }Now we can further explore the eigenvalues below ��k�1, etc., with the same results. Thusat the end of the procedure we arrive at the conclusion that L� can have at most the n simpleeigenvalues given by the values of the preceding corollary below the values C�d�1. But sincewe know that there must be n such eigenvalues, we conclude that all these candidates are infact eigenvalues. This yields the following proposition:Proposition 4.10: Assume that all inequalities (4.12) are strict for all i = 1; : : : ; n. Thenthe spectrum of L� below �d�1 consists of n simple eigenvalues that satisfy:�k = capBk (Sk�1)khkk22 (1 +O(��=2 + e�Æ=�)) ; k = 1; : : : ; n= capBk (Sk�1)pdet(r2F (xk))p2��d eF (xk)=� �1 + O��1=2j ln �j; ��=2; e�Æ=���= 1Exk �Sk�1 (1 + O(��=2 + e�Æ=�)) (4:54)The corresponding eigenfunctions satisfy (4.50).Proof: We have seen in fact that �k = K(k)kk �1 +O(e��=�; ��=2)�, which provides the �rstassertion of Proposition 4.10. It remains to identify the eigenvalues with the inverse meantimes. This follows from Proposition 6.1 in [BEGK3], provided we can show thatZ dye�F (y)=�h2k(y) � Z dye�F (y)=�hk(y) (4:55)In fact, we will show more, namely that both sides of (4.55) are asymptotically equal toe�F (xk)=� p2��dpdet(r2F (xk)) (4:56)We must show that the main contribution of the integrals comes from a small neighborhoodof xk, which yields the contribution (4.56). It is clear that all contributions from the sety : F (y) > F (xk) + �j ln �j give only sub-leading corrections. To treat the complement ofthis set, we use the bounds on the equilibrium potential of Eq. (4.27) in [BEGK3]. Up topolynomial factors in �, it implies that the integrand on the right-hand side of (4.55) (anda fortiori on the left-hand side) in the connected components of this level set that do notcontain xk is smaller than e�[F (y)+F (z� (y;Bk))�F (z�(y;Sk�1))]=� (4:57)



30If y is in the component of the level set that contains the minimum xj , and j < k, we seethat this is equal to e�F (z�(xj ;Bk))=� (4:58)which is exponentially smaller than exp(�F (xk)=�), independent of y. If j > k, we still getthe same result if F (y) � F (z�(xj ;Sk�1)). Otherwise, we can write (4.57) ase�[F (y)�F (xj )]=�e�[F (xk)+(F (z�(xj ;Bk))�F (xk))�(F (z�(xj ;Sk�1))�F (xj ))]=� (4:59)We will argue that F (z�(xj ; Bk))� F (xk) > F (z�(xj ;Sk�1))� F (xj) (4:60)Assume the contrary. Note that triviallyF (z�(xj ;Sk�1)) � F (z�(xj ;Sj�1)) (4:61)while F (z�(xj; Bk)) = F (z�(xk; Bj)) � F (z�(xk;SjnBk)) (4:62)Therefore, our assumption implies thatF (z�(xj ;Sj�1))� F (xj) � F (z�(xk;SjnBk))� F (xk) (4:63)which a moments reection shows to be in contradiction with the conditions (4.12) at stagej. In other words, if our assumption was true, then the set Bk would have had to yields thelargest eigenvalue at stage j, i.e. it would have had to be labelled Bj . Thus (4.60) must hold.Since by assumption the inequalities are strict (which is more than we need), it followsthat indeed Z dye�F (y)=�hk(y) = e�F (xk)=� p2��dpdet(r2F (xk)) �1 +O ��1=2j ln �j�� (4:64)and of course the same bound holds when hk is replaced by h2k . This concludes the proof ofthe theorem.}Improved error estimates. To conclude the proofs of Theorems 1.2 and 1.3 we only needto improve the error estimates. In the proofs of this section we have produced error termsfrom two sources: the exponentially small errors resulting from the perturbation around� = 0 and the not perfect orthogonality of the functions hi, and the much larger errors



31of order ��=2 that resulted from the a priori control on the regularity of the eigenfunctionsobtained from the H�older estimate of Lemma 4.3. In the light of the estimates obtained onthe eigenfunctions these can now be improved successively (as in the proof of Theorem 3.1of [BEGK3]). Notice �rst that the eigenfunction corresponding to the minimum xk is smallenough at all the minima xl, l < k that we can actually take J = fkg and Jk = f1; : : : ; k�1gin (4.17), (4.19). Then we know from Corollary 4.9 thatoscy2B4p�(xk)�k(y) � C��=2 supy2B4p�(xk)�k(y) (4:65)which improves the a priori estimate (3.5). Then the H�older estimate stated in Lemma 4.1of [BEGK3] gives the improvementoscy2B�(xk)�k(y) � C��=2 �C��=2 + �k�(d+1)=2� supy2B4p�(xk)�k(y) � C�� supy2B4p�(xk)�k(y)(4:66)over the estimate (3.3). This allows to replace all errors of order ��=2 by errors of order ��.This procedure can be iterated m times to get errors of order �m�=2 until these are as smallas the exponentially small errors.Finally we would like to improve the precision with which we relate the eigenvalues to theinverse mean exit times. This precision is so far limited by the precision with whichExk �Sk�1 � capBk (Sk�1)khkk2 (4:67)holds. From Proposition 6.1 of [BEGK3] we know that this precision is limited only by thevariation of Ex�Sk�1 on Bk . To improve this, we need to controlcapBk(Sk�1)khkk2 � capB�(x)(Sk�1)khB�(x);Sk�1k2 (4:68)Now it is very simple so see that if x 2 Bp�(xk), thenjhB�(x);Sk�1 (y)� hk(y)j � e�Æ=�hk(y) (4:69)Namely,jhB�(x);Sk�1(y)� hk(y)j� Py �f�Bk < �Sk�1g \ f�Sk�1 < �B�(x)g�+ Py �f�B�(x) < �Sk�1g \ f�Sk�1 < �Bk�B�(x)g�(4:70)



32But by the Markov propertyPy �f�Bk < �Sk�1g \ f�Sk�1 < �B�(x)g�� Py ��Bk < �Sk�1 �maxz2Bk P��Sk�1 < �B�(x)� � e�Æ=�Py ��Bk < �Sk�1� (4:71)The second summand in (4.70) is bounded in the same way.This implies of course thatkhB�(x);Sk�1k2 � khkk2 � e�Æ=�khkk2 (4:72)We only need a similar estimate for capacities. While this may appear more diÆcult at �rstsight, we can take advantage of the fact that as long as ��((B�(x) [ Sk�1)c) � �k, we canreplace Bk in the proof of Proposition 4.10 without further changes by B�(x). Thus�k = capB�(x)(Sk�1)khB�(x);Sk�1k22 �1 +O(e�Æ=�)� = capBk(Sk�1)khkk22 �1 + O(e�Æ=�)� (4:73)which implies together with (4.72) thatjcapB�(x)(Sk�1)� capBk(Sk�1)j � e�Æ=�capBk (Sk�1) (4:74)Based on (4.74) and (4.71), one can improve Proposition 6.1 of [BEGK3] iteratively as aboveto yield Exk �Sk = capBkSk�1khkk2 �1 + O(e�Æ=�)� (4:75)which together with the capacity estimate given in Theorem 1.1 of [BEGK3] implies the �rstequality in Theorem 1.2. Thus all error terms of order ��=2 can be removed in (4.54) and(4.50), completing the proofs of Theorems 1.2 and Theorem 1.3. }}Exponential distribution of exit times. We conclude this chapter with a result that willimply Theorem 1.4 on the exponential distribution of exit times. Let LD� denote the Dirichletoperator with Dirichlet conditions in D. To avoid confusion, we assume thatD = Sk�1. Notethat Proposition 4.10 (and its improvement) also applies to the operator LD� , and if we denoteby ��ik the i� th eigenvalue of LD� , we see that within our usual errors,��ik � �k+i (4:76)for i = 1; : : : ; n� k, and the corresponding eigenfunction ��ik satis�es�ik(y) = hk+i(y)khk+ik2 (1 +O(e�Æ=�)) + nXj=k dj(y)hj(y)khjk2 (4:77)



Metastability and spectra 33with jdj(y)j � e�Æ=�. Let us denote henceforth by ��ik the corresponding normalized eigenfunc-tions (e.g. k��ikk2 = 1). Note that ��ik = �ik(1 +O(e�Æ=�)), so in fact they can be representedin the same way as (4.77) with rede�ned dj satisfying the same bounds.Denote by Pk�i the projector on the subspace generated by �ik�1 and by P? the projectorto the subspace orthogonal to span(��1k�1; : : : ; ��n�kk�1 ). Note thatPxk [�D > T ] = �Æxk ; e�TLD� 1IDc�= n�kXi=1 �Æxk ; e�TLD� Pk�i1IDc�+ �Æxk ; e�TLD� P?1IDc�= n�kXi=1 e���ik�1T ��ik�1(xk) ZDc dy e�F (y)=� ��ik�1(y) +O�e�T ��n� (4:78)Given the precise control on the eigenfunctions, it is not diÆcult to obtain thatPxk [�D > T ] = �Æxk ; e�TLD� 1IDc�= n�kXi=1 e���ik�1T ��ik�1(xk) ZDc dy e�F (y)=� ��ik�1(y) +O�e�T ��n� (4:79)Now using (4.55), (4.56), we get��ik�1(xk) ZDc dy e�F (y)=� ��ik�1(y)= hk�1+i(xk)RDc dy e�F (y)=�hk�1+i(y)khk�1+ik22 + X(j;j0)6=(k�1+i;k�1+i) djdj0hj(xk)RDc dy e�F (y)=�hj0(y)khjk2khjk2= hk�1+i(xk)(1 + O(e�Æ=�)) + X(j;j0)6=(k�1+i;k�1+i) djdj0hj(xk)cj;j0e�[F (x0j )�F (xj)]=2� (4:80)Now if j = k, the term in the last sum isdkdj0ck;j0e�[F (x0j)�F (xk)]=2� � e�Æ=� (4:81)since F (xj0) > F (xk) for j 00 > k; in all other cases,hj(xk) � e�[F (z�(xj ;Mk+inxj)�F (xk))]=� < e�[F (xj)�F (xk)]=� (4:82)so that hj(xk)e�[F (x0j)�F (xj )]=2� < e�[F (xj)�F (xk)]=2�e�[F (x0j )�F (xk)]=2� < ��Æ=� (4:83)
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