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Onset and breakdown of relaxation oscillations in the torsional Quincke pendulum
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In a strong constant electric field, a dielectric particle immersed in a weakly conducting fluid
exhibits spontaneous rotations. This phenomenon is known under the name of the Quincke effect.
In the original setup the particle was suspended on a silk thread and performed torsional oscillations
of remarkably high amplitude. We derive the governing equations for this experiment, and ascertain
that onset of oscillations from the quiescent state corresponds to the supercritical Hopf bifurcation.
For the case of a soft thread, we characterize the regime of large-scale torsional relaxation oscil-
lations: explicit estimates are derived for their period and amplitude, effects of bifurcation delay
are described. In a stronger electric field, these relaxation oscillations yield to small-scale erratic
rotations of the pendulum.

PACS numbers: 45.20.dc, 47.65.-d, 02.30.Oz

I. INTRODUCTION

In the last decade of the 19th century Georg Quincke
performed and meticulously described experiments in
which various dielectric objects were suspended on thin
threads and put between the vertical plates of capaci-
tor filled with weakly conducting liquid. As soon as the
strong constant electric field was switched on, the objects
started to rotate clockwise or counterclockwise around
the suspension axis [1]. To enable rotations, the field
strength had to exceed a certain threshold value which
depended on the properties of the experimental setup.
Quincke measured amplitudes and periods of torsional
oscillations for different field strengths, different liquids,
different sorts of dielectrics and different shapes (rods,
spheres, cylinders) and sizes of objects. Remarkably, in
strong fields the registered amplitude of oscillation was
quite large: between the reversal points, hundreds of rev-
olutions of suspended bodies were counted (cf. Tables in
p. 435 of [1]).

Nowadays, spontaneous rotation of dielectric particles
in the constant electric field is known as the Quincke ef-
fect. Quincke himself ascribed it to the action of the thin
film of air between the body and the fluid: displacement
of electric flux lines, caused by the difference of permittiv-
ities, deforms the film and creates the pressure gradient
which, in its turn, generates the torque responsible for
the rotation. A more accurate quantitative description
was obtained in the second half of the 20th century: it
was shown, that the torque originated in the difference
between the relaxation times for electric charges in the
liquid and in the solid body [2, 3].

In recent years, Quincke effect was found to stay be-
hind non-trivial collective phenomena in suspensions of
dielectric particles in weakly conducting fluids. Onset of
Quincke rotation has been demonstrated to decrease the
effective viscosity of such suspensions [4]. Furthermore,
the Quincke rotation of insulating grains facilitates the

convective transfer of the electric charge through the liq-
uid. Thereby – somewhat counter-intuitively – adding
nonconducting particles to the suspension is able to in-
crease its bulk conductivity [5].
In absence of the thread, equations which govern dy-

namics of a solitary insulating particle immersed in a
weakly conducting fluid and exposed to a constant elec-
tric field, have been found to be equivalent to the well-
known Lorenz equations [6], a prototype of deterministic
aperiodic dynamics; subsequent experiments have con-
firmed existence of stationary and chaotic rotations [8].
Here, we return to the original experimental setup and

consider the case of a solid body suspended on an elastic
thread. We derive a set of governing equations for the
body, and demonstrate that transition to torsional oscil-
lations occurs through the supercritical Hopf bifurcation.
In his account, Georg Quincke noted that “immedi-

ately after the reversal, the fast turns follow, which grad-
ually slow down, terminate and change the direction” (p.
429 of [1]); “in viscous fluids the angular velocity is in-
dependent of the torsional angle of the thread, and stays
constant for the long time” (ibid., p.431). This descrip-
tion implies that the observed torsional oscillations were
strongly anharmonic; in the modern parlance they would
be probably referred to as relaxation oscillations. In his
experiments, Quincke used silk threads because he “had
found no other substance which would withstand with-
out rupture such a big number of revolutions as silk” (p.
430 of [1]). In accordance with this, we mostly concen-
trate on the case of “soft” suspension, where the problem
possesses two disparate timescales: the slow mechanical
timescale and the fast electric one.
Separation of timescales permits to characterize explic-

itly the regime of relaxation oscillations, providing esti-
mates for their amplitude and period. Since the subspace
corresponding to the fast dynamics is three-dimensional,
both the approach to and the departure from the slow
regime may be monotonic or oscillatory; we describe the
corresponding effects and their implications. In partic-
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ular, the oscillatory departure from the slow state is a
consequence of the subcritical Hopf bifurcation in the
fast system; therefore, the observable period of torsional
oscillations is not an intrinsic characteristics of the sys-
tem but sensitively depends on the level of noise in the
experiment or on the precision of calculations in the case
of numerical simulation.
The layout of the paper is as follows. In the next sec-

tion we describe the physical object and derive the equa-
tions which govern its dynamics. Section III contains the
results of weakly nonlinear analysis close to the stabil-
ity threshold of the quiescent state. It turns out that
for soft suspension threads, the domain of applicability
of weakly nonlinear predictions is strongly restricted. To
explain this effect, we perform in Sect. IV separation of
timescales and evaluate the period and the amplitude of
the relaxation torsional oscillations. In Sect. V the phe-
nomenon of bifurcation delay is treated: we discuss the
relationship between the observed characteristics of os-
cillations and the level of numerical inaccuracies or fluc-
tuations in an experimental setup.

II. SETUP AND GOVERNING EQUATIONS

Consider an axially symmetric dielectric solid object
suspended inside the weakly conducting fluid on an elas-
tic thread. Fig. 1 shows two exemplary configurations
and a convenient reference frame which we use hereafter:
x-axis is directed along the constant horizontal electri-
cal field E, and z-axis, respectively, upwards along the
thread.
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FIG. 1: (color online) Axially symmetric dielectric bodies sus-
pended in the weakly conducting fluid. Direction of x-axis is
parallel to the horizontal permanent electric field E.

In the derivation of equations of motion for the re-
sulting torsional pendulum we follow the spirit and, par-
tially, notation of [2, 6] where the similar situation (but
without a thread) was considered. Interaction of the to-
tal dipole moment of the suspended body Ptot with the
external constant field E generates a torque which acts
upon the body. This torque is counteracted by elastic-
ity of the thread as well as by viscous friction between
the body and the surrounding fluid. Let the elastic force

obey Hooke’s law; in case, say, of a silk thread, the latter
holds for quite sizeable deflections.
The viscous torque deserves a more elaborate discus-

sion. We restrict our analysis to the Stokes approxima-
tion, so that the nonlinear terms in the Navier-Stokes
equations can be disregarded. This requires smallness of
the Reynolds number. Within the Stokes equation, the
axial symmetry of the problem admits (in general, time-
dependent) axisymmetric flow patterns in which both
the radial and the axial components of velocity are ab-
sent, and the remaining azimuthal component vϕ is ϕ-
independent.
Let the instantaneous angular velocity of the body

be Ω=(0, 0, dϕ/dt). The overall instantaneous viscous
torque with which the axisymmetric flow pattern acts
upon this body equals

M = −2πη

∫

(1 +R′2(z)) (r2
∂vϕ
∂r

− r vϕ )

∣

∣

∣

∣

r=R(z)

dz

where η is the dynamical viscosity of the fluid, r denotes
the radial coordinate, R(z) is the value of r at the lateral
boundary of the body, and integration is performed along
the axial direction.
The Reynolds number of the flow Re = ΩR2/ν can be

viewed as the ratio of the characteristic “viscous” time
R2/ν and the “rotational” time 1/Ω. Since the Stokes
approximation is based on the assumption Re ≪ 1, the
typical lifetime of viscous perturbations is much smaller
than the typical duration of one revolution of the body.
In other words, changes in the angular velocity of the
rotating body are accompanied by nearly instantaneous
relaxation of the velocity field in the bulk of the fluid.
This allows us in our treatment below to neglect cor-
rections caused by non-stationarity (cf. §24 of [7]) and
to use for the frictional torque the values, produced by
stationary velocity fields. As a consequence, the torque
becomes proportional to the angular velocity of the body.
Balance of torques governs dynamics of the deflection

angle ϕ of the pendulum:

I
d2ϕ

dt
= (Ptot ×E)z − α

dϕ

dt
− β ϕ . (1)

Here, I is the moment of inertia of the body, α is the co-
efficient of the torsional viscous friction and, finally, β is
the torsional elastic coefficient of the suspension thread.
The total dipole moment Ptot consists of two parts:

Ptot=P∞ +P (t). Instantaneous polarization P∞=χ∞E

is proportional to the applied constant field; here χ∞ is
the high frequency dielectric susceptibility. The time-
dependent component P (t) is the retarding polarization
caused by accumulation of free charges on the liquid-solid
boundary.
Two factors are responsible for evolution of P (t) : re-

laxation of the dipole magnitude and direction, as well
as variation of the direction caused by the body rota-
tion. Accordingly, the evolution equation contains two
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terms [2]:

dP

dt
= − Ptot − χ0E

τM
+Ω× P (2)

In terms of the angle ϕ and horizontal components of
polarization Px and Py , equations (1) and (2) yield

I
d2ϕ

dt
= −Py E − α

dϕ

dt
− βϕ

dPx

dt
= −Py

dϕ

dt
− Px

τ
+

E(χ0 − χ∞)

τ
(3)

dPy

dt
= Px

dϕ

dt
− Py

τ

Dynamics in the system (3) depends, of course, on the
values of the coefficients in these equations. Of these only
one characterizes the thread: for a filament with length
h and diameter d, the coefficient of torsional elasticity β
equals πd4G/(32h) where G denotes the rigidity modulus
of the filament stuff. The rest: moment of inertia I, the
coefficient of torsional viscous friction α, the values of
the instantaneous susceptibility χ∞, static susceptibility
χ0 and the Maxwell relaxation time τ are related to the
shape and size of the body. The last three coefficients
depend also on the electric characteristics of the setup:
permittivities εl,s and conductivities γl,s (here and be-
low, indices l and s refer, respectively, to the liquid and
the solid media). Below, we quote these coefficients for
simple configurations from Fig. 1.
For a sphere of mass m and radius a, one has I =

2ma2/5, α = 8πηa3, Maxwell relaxation time is τ =
(2εl + εs)/(2γl + γs) , and susceptibilities are given by
χ∞ = a3εl (εs − εl)/(2εl + εs) and χ0 = a3εl(γs −
γl)/(2γl + γs).
For a sufficiently long cylinder with mass m, radius

a and height L, the respective values are: I = ma2/2 ,
α = 4πηa2L , τ = (εl+εs)/(γl+γs) , χ∞ = 2πa2Lεl(εs−
εl)/(εs + εl) and χ0 = 2πa2Lεl(γs − γl)/(γs + γl).
It is convenient to measure time in units of τ . In terms

of the (reversed) angular velocity X = −ϕ̇ and dimen-
sionless variables

Y =
PyEτ

α
, Z =

(

Px − (χ0 − χ∞)E
)

E τ

α
,

equations (3) turn into the “Lorenz-like” form

Ẋ = σ(Y −X) + ν2ϕ ,

Ẏ = X (R− Z) − Y , (4)

Ż = X Y − Z ,

ϕ̇ = −X ,

where the dot denotes differentiation with respect to di-
mensionless time t/τ , the new parameters σ and R are
defined as

σ =
ατ

I
, R =

(χ∞ − χ0)E
2τ

α
,

and, finally, ν = τ
√

β/I is the dimensionless eigenfre-
quency of the torsional pendulum.

Let us briefly discuss the parameters and general prop-
erties of the system (4). Of the variables, the deflection
angle ϕ is directly amenable to experimental measure-
ments, whereas dynamics of re-scaled dipole components
Y and Z is much more difficult to resolve. Of the three
participating parameters σ, ν and R the former two are
non-negative. The parameter σ is proportional to coef-
ficient of viscous friction α and characterizes the dissi-
pation. Recent experimental measurements on Quincke
rotation of glass tubes in transformer oil correspond, in
these terms, to σ=14.6 [6] and σ=2.5 [8]. The values of
eigenfrequency ν are larger for thick short stiff threads,
and can be decreased by choosing longer, thinner and/or
softer threads. The parameter R, proportional to the
square of the field strength E, characterizes the exter-
nal pumping. Depending on the sign of χ∞ − χ0, R
can be of either sign. As we will see below, non-steady
dynamics in equations (4) can occur only at positive val-
ues of R. This imposes a condition for susceptibilities:
χ∞ > χ0, which, in terms of the media characteristics,
implies εs/εl > γs/γl . If this inequality is fulfilled, the
dipole moment of the body, induced by the field E, is di-
rected opposite to this field, and the potentially unstable
situation arises [9].

Equations (4) are invariant with respect to simulta-
neous change of sign of ϕ, X and Y ; this reflects the
obvious symmetry between the clockwise and counter-
clockwise rotation directions. At ν = 0 the last equation
decouples, and the first three ones turn into the famous
Lorenz equations, a prototype of deterministic chaos [17].
Thereby the angle ϕ becomes, up to a sign, an integral
of the chaotic variable X(t) over time. Equivalence be-
tween the Lorenz equations and the equations of a free
rotating dielectric body in the constant electric field was
established in [6]; in the subsequent publication [8], this
conclusion was confirmed through accurate experimental
comparison.

III. LINEAR AND WEAKLY NONLINEAR

ANALYSIS

Under all parameter values, equations (4) possess a
unique steady solution ϕ = ϕ̇ = Y = Z = 0 which cor-
responds to the quiescent state without torsional defor-
mation of the thread. As long as the applied electric
field is sufficiently weak, this equilibrium is asymptoti-
cally stable; increase of the field intensity (manifested in
the growth of the parameter R) eventually results in its
destabilization. Onset of oscillations with the critical fre-
quency ωc follows the Andronov-Hopf bifurcation at the
threshold value R = Rc:

Rc = 1 +
ν2

1 + σ
, ωc =

ν√
1 + σ

. (5)
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Notably, ωc < ν. Expansion of the oscillation ampli-
tude up to the cubic terms yields asymptotic parameter
dependencies for the maximal deflection angle ϕmax and
frequency of oscillations ω:

ϕmax(R) =

2(1 + σ)

ν

√

(1 + σ + 4ν2)(R−Rc)

3[(1 + σ)2+ (1 + 2σ)ν2]
+O(R −Rc) (6)

and

ω(R) =

ωc

[

1 +
σ(1 + σ)(R −Rc)

2[(1 + σ)2+ (1 + 2σ)ν2]

]

+O
[

(R−Rc)
2
]

. (7)

Since the coefficient at (R − Rc) in Eq. (6) is posi-
tive for all positive values of σ and ν, the bifurcation is
invariably supercritical. This fact has important phys-
ical implications: variations of mechanical (shape, size,
density and material of the body, length and material
of the thread, viscosity of the fluid etc.) and electrical
(permittivities and conductivities) characteristics of the
setup, change, of course, the threshold value for the field
intensity and the frequency of oscillations at their on-
set. Irrespectively of this, however, transition from qui-
escent state to oscillations is always of the soft type, and
the amplitude of the newborn oscillations is small. The
above assumptions of the Hooke torsional elasticity and
moderate Reynolds number are irrelevant for this conclu-
sion as well: although they may get questionable for fast
large-scale oscillations, sufficiently close to the equilib-
rium both the deflections and the angular velocities are
small enough to ensure linearity. Noteworthy, Eq. (7)
predicts monotonic growth of the oscillation frequency
with the increase of R.
Estimates (6) and (7) are asymptotically correct for

R → Rc; let us test their accuracy numerically at fi-
nite distances from the threshold. Fig. 2 indicates that
for sufficiently stiff threads both estimates overshoot the
actual values but remain reasonably accurate even at
R−Rc ≈1.
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FIG. 2: (color online) Amplitude and frequency of oscillations
at σ = 10, ν2 = 10. Rc = 1.909, ωc = 0.953. Solid lines:
estimates (6,7). Crosses: numerically obtained values.

However, for soft threads with small values of ν2 the
picture looks quite different. As seen in the top panels
of Fig. 3, at low values of ν the working range of R for
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FIG. 3: (color online) Amplitude and frequency of oscillations
at σ = 10, ν2 = 0.1. Rc = 1.00909, ωc = 0.0953. Solid lines:
estimates (6,7). Crosses: numerical values.

the estimates (6,7) is pretty small. Close to the thresh-
old, the mismatch for the estimate of the amplitude (left
top panel) is not indeed dramatic. For the frequency of
oscillations, however, the discrepancy is qualitative: the
actual values of the frequency, after an initial very short
range of growth, start to decay. Computations further
from the threshold, visualized in the bottom panels of
Fig. 3, show the growth of mismatch: at R − Rc ≈2
the predicted value of the amplitude is 4 times smaller
than the actual one, whereas the frequency attains val-
ues which are almost 7 times smaller than the predic-
tions and 4 times lower than critical frequency at the
onset of oscillations. Compared to the weakly nonlinear
estimates, torsional oscillations become rather large and
acquire long periods.

IV. PENDULUM ON A SOFT THREAD:

SEPARATION OF TIMESCALES AND

ESTIMATES OF CHARACTERISTICS

From now on, we concentrate on the case of soft thread,
ν2 ≪ 1. To begin with, let us briefly recall the case of
“pure” Lorenz dynamics at ν = 0. For R < 1 the trivial
equilibrium X = Y =Z = 0 is the unique attractor. For
R > 1, two symmetric stationary solutions exist: X =
Y = ±

√
R− 1, Z=R−1. These fixed points are stable for

arbitrary R if σ < 2, otherwise they are stable for R<
Rh= σ(σ + 4)/(σ − 2). At R=Rh the subcritical (hard
mode) Hopf bifurcation takes place. In a large range of R
beyond Rh the dynamics is chaotic. In fact, the skeleton
of the chaotic set emerges in the phase space already well
below Rh at the so-called homoclinic explosion [11]. The
newborn chaotic set is repelling, but when R is increased,
it acquires attracting properties and coexists with stable
equilibria in a certain range of R.
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A. Curve of slow motions: general aspects

From the point of view of pendulum, nontrivial sta-
tionary solutions of the Lorenz equations are regimes
of rotation with constant angular velocity −X : ϕ(t) =
ϕ(0)−X t. In the phase space, fixed points of the Lorenz
equations turn into invariant straight lines upon which
the values of ϕ are unbounded.
Introduction of torsional elasticity disables unbounded

rotations. In order to follow the breakup of straight lines,
let us rescale the angle variable: ϕ = −Ψσ/ν2. In terms
of Ψ, equations (4) become

Ẋ = σ(Y −X −Ψ),

Ẏ = X (R− Z)− Y, (8)

Ż = X Y − Z,

Ψ̇ = ǫX

with the small parameter ǫ ≡ ν2/σ. Note that |Ψ| is
not necessarily small, since the initial variable ϕ in the
non-perturbed case can assume arbitrarily large values.
The system (8) displays the obvious separation of

timescales: dynamics ofX , Y and Z is “fast” whereas the
variable Ψ, according to the last equation, is slow. For
sufficiently small values of ǫ, Ψ turns into a “frozen” inho-
mogeneity in the first equation. On the fast timescale t,
one observes dynamics of the asymmetric Lorenz equa-
tions with parameters σ and R, and pseudo-parameter
Ψ. On the slow timescale ǫt, the evolution of Ψ obeys
dΨ/d(ǫt) = 〈X〉 where averaging is performed over the
fast time.
Behavior in the full system of equations corresponds

to the drift across the parameter space of the asymmet-
ric Lorenz equations. Depending on the value of R and
instantaneous value of Ψ, it is a motion through the do-
mains of stationary or chaotic dynamics in the fast sub-
system. In the former case, when attractor of the fast
equations is a fixed point, explicit characteristics of dy-
namics can be obtained in the closed form. Solving for
steady solutions of the first three equations in (8) as func-
tions of R and Ψ, we find Y = X + Ψ, Z = X(X + Ψ)
where X is a root of the cubic equation

X3 +X2Ψ+X (1−R) + Ψ = 0. (9)

With Ψ running through all real values, the set of these
points forms a one-dimensional curve of slow motions (re-
ferred below as “slow curve”) in the four-dimensional
phase space of the full problem. The slow equation
Ψ̇ = ǫX lets Ψ increase (on the slow timescale) if the
value of X is positive and decrease otherwise.
It is convenient to parameterize the slow curve not by

Ψ, but byX ; for this purpose Eq. (9) is inverted, yielding
a dependence of Ψ on the “stationary” value of X :

Ψ(X) =
R X

1 +X2
−X. (10)

Slow evolution of X along the slow curve is governed by

Ẋ = −ǫ
X (1 +X2)2

(1 +X2)2 − R(1−X2)
(11)

Typical shapes of the slow curve are plotted in Fig.4.
For R ≤ 1 (left panel) the function Ψ(X) is monotoni-
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FIG. 4: (color online) Dependence Ψ(X) on the slow curve.
Arrows: directions of motion. Dashed lines: fast “jumps”.

cally decreasing, and the denominator in Eq.(11) is posi-
tive. Accordingly, on the slow timescale the motions de-
cay to the trivial equilibrium X = Y = Z = Ψ = 0. For
R > 1 (right panel) the dependence Ψ(X) is N -shaped:
the right and the left branches of the curve are decreasing
whereas on the middle segment the function is increasing.
The local maximum lies at

Xm =

(√
R2 + 8R−R− 2

2

)1/2

and equals

Ψm =

(

R2 − 20R− 8 +
√

R(8 +R)3

8

)1/2

;

the local minimum at X = −Xm equals −Ψm.
To check whether the slow curve is attracting, we lin-

earize the fast equations near a point with coordinate X0

upon this curve, and obtain the characteristic polynomial

λ3 + λ2(σ + 2) + λ

(

1 + 2σ +X2
0 − σR

1 +X2
0

)

+ σ

(

X2
0 +R+ 1− 2R

1 +X2
0

)

= 0 (12)

Passage through ±Xm corresponds to the saddle-node
bifurcation in the fast system: two equilibria appear/die.
At X0 = ±Xm, Eq.(12) possesses a zero root.
For the whole middle segment −Xm < X0 < Xm, the

last term in (12) is negative at R > 1, hence at least one
of the eigenvalues λ is real and positive. Accordingly, the
middle segment is repelling; its points are saddle points of
the fast system. Stability of the outer segments depends
on the values of R and σ.
Both side branches of the slow curve are locally stable

as a whole, provided the inequality

R < RTB =
4 + 3σ2 − (σ − 2)

√
4 + 4σ + 9σ2

2σ
(13)
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holds. In this situation a node which participates in the
saddle-node bifurcation of the fast system Ψ = ±Ψm is
a stable node. For R > RTB this node is unstable, and
the adjoining segment of the side branch is unstable. At
R = RTB and X0 = ±Xm Eq.(12) has two zero solutions:
this is the codimension-2 Takens-Bogdanov bifurcation in
the fast system.
Let us follow the dynamics of the system at 1<R<

RTB. Taken initial conditions somewhere on the right
branch, the imaging point slowly – with the velocity (11)
– climbs this branch upwards, until reaching the maxi-
mum Ψm at Xm. Since the value of X at this critical
point is positive, Ψ should grow further. Therefore, the
imaging point is forced to detach from the slow curve,
and a rapid evolution on the fast timescale sets on. Dur-
ing the fast motion the value of Ψ remains almost frozen
a bit above Ψm, whilst X finally settles on the left branch
at

Xs = −
(

(
√
R2 + 8R+R)2

16
− 1

)1/2

:

for Ψ > Ψm the equilibrium on the left branch is the sole
attractor of the fast system. This flight is followed by
another interval of slow motion: since on the left branch
the angular velocity is negative, the system moves down-
wards. On reaching the minimum, it jumps back to the
right branch, and completes thereby the cycle which con-
sists of creeping motions along two slow segments sepa-
rated by two swift jumps. In Fig. 4 the jump stages are
indicated by dashed arrows. In fact, this is the classical
textbook mechanism which ensures, for example, the on-
set of relaxation oscillations in the Van der Pol equation
[18].

B. Estimates of amplitude and period

Variable Ψ oscillates between −Ψm and Ψm. Accord-
ingly, the original angle variable ϕ of (3) and (4) ex-
hibits periodic relaxational oscillations with the ampli-
tude Φ0 = 2σΨm/ν2, or, in terms of R,

Φ0 =
σ

ν2

(

R2 − 20R− 8 +
√

R(8 + R)3

2

)1/2

. (14)

When estimating the period of those oscillations, we
neglect the duration of fast jumps; integration of (11)
along the relevant segments of the slow curve renders
expression for the period

T0 =
σ

ν2

(

3
√
R2 + 8R−R − 8

2

+ log
R2 + 8R+ 8 + (R+ 4)

√
R2 + 8R

8

+ R log

√
R2 + 8R−R

8

)

. (15)

There is, however, an important distinction between
the Van der Pol equation and our situation: in the for-
mer case the fast system is one-dimensional, therefore
relaxation to the respective slow curve is monotonic. In
our case, the fast subspace is three-dimensional. On the
side branches, all three roots of Eq. (12) are real only
in the immediate vicinity of the extrema of the curve;
elsewhere along the branches the characteristic polyno-
mial has a pair of complex-conjugate roots. Moreover,
the (negative) real part of those eigenvalues lies closer to
zero than the single real eigenvalue, therefore relaxation
to the side branch on the fast timescale is oscillatory.
Except for this circumstance, the rest of the above de-
scription of relaxation oscillations remains qualitatively
and quantitatively correct. An illustration is provided in
Fig. 5 and Fig. 6 where time evolution of the variables
as well as projections of phase portraits are presented.
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FIG. 5: (color online) Temporal evolution of variables. σ =
10, R = 3, ν = 0.1.

Large “overshoots” which precede the segments with
nearly constant slope in the time series of fast variables
X,Y, Z in three lower panels of Fig. 5, correspond to
the starting points of the non-monotonic relaxation; a
magnification of time axis would resolve here the rapidly
decaying oscillations. As seen on the central panel of
Fig. 6, during the slow stage the values of Ψ and X
follow closely the dependence (9).
As soon as the value of R exceeds the threshold (13),

segments of the side branches adjacent to the extrema
become unstable. Stability is restricted to the outer parts
with

|X | > Xh =




σ
(

R− 8− 2σ +
√

(R − 4− 2σ)2 + 8R
)

4
− 1





1/2

. (16)

On reaching from outside the point with X = Xh, the
equilibrium state in the fast subsystem gets destabilized
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FIG. 6: (color online) Projections of phase portrait. σ = 10,
R = 3, ν = 0.1. Dashed line on the central panel: dependence
(9).

via the subcritical Hopf bifurcation. Therefore not only
the fast relaxation to the slow curve as before, but also
the departure from it at X ≈ Xh becomes oscillatory.
This is visible in the right and left panels of Fig. 7.
Compared to Fig.6, additional tight wiggles appear on
the phase portraits. The overwhelming portion of time,
however, is spent not on the spirals but on the nearly
straight “vertical” segments of the right panel. As seen in
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FIG. 7: (color online) Projections of phase portrait. σ = 10,
R = 8, ν = 0.1. Dashed line on the central panel: dependence
(9).

the central panel of Fig.7, for R > RTB the regions adja-
cent to extrema of Ψ(X) are not visited by trajectories of
the system. In this situation both the amplitude and the
period of oscillations fail to reach the values predicted,
respectively, by (17) and (15). Instead, the amplitude
turns into

Φ1 =
2 σXh

ν2

(

1− R

1 +X2
h

)

(17)

and the period, becomes

T1 =
2 σ

ν2

(

R (X2
h1 −X2

h)

(1 +X2
h)(1 +X2

h1)

+ (R − 1) log
Xh

|Xh1|
− R

2
log

1 +X2
h

1 +X2
h1

)

, (18)

Xh1 being the coordinate of the point on the slow curve
to which the system relaxes after a jump from Xh:

Xh1 = −RXh +
√

R2X2
h − 4(1 +X2

h)(1 +X2
h −R)

2 (1 +X2
h)

.

Dependencies (17) and (18) are non-monotonic functions
of R. Segments of growth immediately beyond RTB are

succeeded by decrease of both characteristics. Finally, at
R=Rh=σ(σ+4)/(σ−2) the value of Ψ which corresponds
to Xh and Xh1 turns into zero, and the amplitude of
relaxation oscillations vanishes. Obviously, the period
vanishes at this value of R as well.

V. CORRECTIONS TO THE ESTIMATES:

BIFURCATION DELAY

In the above estimates the actual period was replaced
by the time interval during which the system creeps along
the stable part of the slow curve; duration of motion out-
side the slow curve has been neglected. Asymptotically
correct in the limit ǫ → 0, these estimates become less
accurate at finite values of ǫ. Expressions (15) and (18)
yield values of period which are proportional to ǫ−1. Du-
ration of the neglected epochs of flight is of the order of
O(1). However, main corrections to (15) and (18) stem
not from these epochs.
The case of R < RTB is straightforward: here, the

system detaches from the slow curve near the extrema of
the latter. This situation is very close to the well-studied
case of the Van der Pol equation [12]: the leading order
terms in the correction correspond to the time which the
system spends hovering near the extremum of the slow
curve, as well as to the “landing” time after the flight;
this time (up to logarithmic corrections) is proportional
to ǫ−1/3. According to Eq. (15), the passage time T0

along the slow curve is proportional to ǫ−1, therefore the
overall period of oscillations can be cast into the form

T = T0 (1 + Cǫ2/3 + h.o.t.) (19)

where the prefactor C is the function of the system pa-
rameters σ and R (an expression much too lengthy, to be
quoted explicitly). This dependence is verified numeri-
cally in Fig. 8.
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ε 2
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FIG. 8: (color online) Period of oscillations at R < RTB:
Corrections to the estimate (15). σ = 10, R = 2.5. T0 is
given by Eq. (15). Crosses: numerical values.

The case R > RTB is qualitatively different. Here,
the imaging point might be expected to detach from the
slow curve on reaching the value ±Xh: there the curve
becomes repelling due to the Hopf bifurcation in the fast
system. For an exemplary case σ=10, illustrated in Fig.
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9. the value of RTB equals 2.91016 . . .; beyond it, the
estimates (17) and (18) for the amplitude and the period
of oscillations, respectively, should hold.
Instead, we observe that approximately until R=4.5

the computed values stay rather close to the predictions
(14) and (15). In this range of R the trajectory tracks
the complete unstable segments of the slow curve, and de-
taches only near the extrema of the latter. For R > 4.5,
as seen in the plots, the computed characteristics stay
below the predictions of (14) and (15); at the same time,
they remain distinctly above the estimates (17) and (18).
Consequently, here the system follows the unstable seg-
ments as well, but leaves the vicinity of the slow curve
before this curve turns back. Contribution of unstable
segments increases the amplitude of the oscillations; du-
ration of the passage along them contributes to the pe-
riod.
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FIG. 9: (color online) Predicted and numerically observed
characteristics of oscillations. σ = 10, ν = 0.1. Solid lines:
estimates (15) and (14). Dashed lines: estimates (18) and
(17). Crosses: numerical values (integration with double pre-
cision).

This phenomenon is known as “bifurcation delay” or
“dynamic bifurcation” [13, 14]. In the immediate vicin-
ity of Xh the growth rate of the instability is arbitrarily
small, whereas the velocity of motion along the slow curve
is small but finite. Therefore for some time the system
continues its motion along the unstable part of the slow
curve; only later it departs and makes a jump to the
opposite branch of this curve.
For a dynamical system with finite smoothness (or even

infinitely smooth but non-analytic one), the length of the
“added” part of the trajectory: segment of the slow curve
between the point of the destabilization and the point of
the jump, has an order of

√

ǫ| log ǫ| [15]. In practice,
it is convenient to use the value

√
ǫ. Since the veloc-

ity of motion along the curve is inversely proportional
to ǫ, the gain in period is ∼ ǫ−1/2. In natural or nu-
merical experiments smoothness of the process is always
finite, due to inevitable fluctuations in the former case
and roundoff errors in the latter one. Accordingly, we
can expect that the observed period follows the depen-
dence T ≈ T1(1 + Cǫ1/2) where T1 is given by the esti-
mate (18). Indeed, the numerical experiments vindicate
this conjecture. However (in contrast to the above case
R < RTB), for the given set of parameters σ and R the
value of the prefactor C is not unique. The prefactor
depends on the limitations in the observations: on the

level of noise in your setup, if you are an experimental-
ist, and, remarkably, on the length of the representation
of real numbers in your computer if you are performing
accurate numerical simulations.
This dependence is visualized in the top panels of Fig.

10. We performed integration of the equations under the
same parameter values, with the same algorithm – recur-
rent Taylor expansion of high order with variable stepsize
and the relative error per step at the level of the roundoff
error – but took different representation of floating point
numbers in the FORTRAN code: ordinary numbers with
7 decimals, double precision numbers with 16 decimals
and quadruple precision numbers with 34 decimals[19].
As seen in the top left top panel, in all three cases the
relative accuracy (T − T1)/T1 is proportional to

√
ǫ, but

the proportionality coefficients (top right panel) are dis-
tinctly different.
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FIG. 10: (color online) Influence of the floating number length
on bifurcation delay. Parameters: σ = 10, R = 12. T1 is
given by Eq. (18). Panels (a,b): deterministic computations;
(c) computations with a random shift of trajectory after every
step. Shift size was taken from a uniform distribution on
the interval (−γ/2, γ/2); (d) computations at ν = 0.1 (ǫ =
0.001). Dependence of slope on the uncertainty γ.

The length of the floating point representation can
be understood as a measure of intrinsic numerical noise
caused by roundoff errors: disturbances which keep the
solution away from the “true” integral curve. Remark-
ably, only this length seems to matter: in contrast, in-
tegration of equation with different orders of the Tay-
lor series expansion (in other words, different degrees of
smoothness of approximate solution) does not seem to
influence the prefactor.
Interrelation between the size of the roundoff error and

the duration of the delay follows from the simplified qual-
itative analysis of the final stage of the slow motion. The
question of interest is, how soon the trajectory reaches
the given distance from the curve. Therefore torsional
components of the motion in the phase space are of less
importance, and two local coordinates suffice: the lon-
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gitudinal ξ along the slow curve and the “transversal” ζ
which measures the distance from that curve. Let the ori-
gin in this new coordinate system lie in the point on the
slow curve with X = Xh. Close to Xh, the growth rate
of ζ, given by the real part of the leading eigenvalues in
the fast system, is proportional to X −Xh = ξ; velocity
of motion along the slow curve is, in this approximation,
constant. Accordingly, dynamics obeys the equations

ξ̇ = A1ǫ, ζ̇ = A2ξζ (20)

with appropriate positive constants A1,2. Let the trajec-
tory start at ξ = 0. A straightforward calculation shows
that the time τd required for the growth of ζ from initial
ζ0 to the endpoint ζ1 is given by

τ2d =
2

ǫA1A2
log

ζ1
ζ0

; (21)

at the end of this time interval the coordinate ξ attains
the value ǫ τd. For our purposes, the endpoint ζ1 should
correspond to the border of validity of Eqs. (20): as
soon as this border is reached, the delay is over, the sys-
tem leaves the neighborhood of the unstable branch of
the slow curve and begins its fast flight to the opposite
branch. As for the starting value ζ0, it is a measure of
decline from the slow curve at Xh. Since passage through
Xh is preceded by the long epoch of motion along the at-
tracting segment of this curve, the transients must have
decayed and can be viewed as negligibly small. Therefore
the mismatch ζ0 is of the size of the error produced by
the very last step of numerical integration. Denoting by
γ the length of uncertainty interval introduced by the last
roundoff error, we set ζ0 ≈ γ, whereupon expression (21)
yields for the delay time τd and the “delay path” pd (in-
crement to the amplitude of the oscillations) qualitative
dependencies

τd ∼
√

− log γ

ǫ
, pd ∼

√

−ǫ log γ. (22)

A roundoff error can be (modulo implementation par-
ticularities for different compilers) viewed as a random
shift in the last meaningful digit. In order to model this
effect for the lengths of representation which are not di-
rectly available to the FORTRAN code, we performed
computations in which, after every step, all four coor-
dinates of the point in the phase space were randomly
shifted; sizes of shifts were taken from the homogeneous
distribution on the interval (−γ/2, γ/2). Results are pre-
sented in the bottom panels of Fig. 10. On the bottom
left panel we observe the same square-root scaling in the
dependence on ǫ. On the bottom right panel, the value
of ǫ is fixed, and linear dependence between the values
of prefactors and

√
− log γ is doubtless. Keeping this in

mind, we rewrite the above expression for the overall pe-
riod as

T ≈ T1

(

1 + C1(−ǫ log γ)1/2
)

(23)

where the uncertainties of computation are explicitly rep-
resented through the value of γ, and the constant C1

depends only the parameters of the problem R and σ.

Finally, we checked the influence of noise on the bi-
furcation delay by adding the term

√
2Dξ(t) to the right

hand size of the equation of motion; here, D is the in-
tensity of the delta-correlated Gaussian white noise ξ(t)
with unit variance. Results are plotted in Fig. 11 and
are largely similar to the above cases of roundoff errors:
relative increase of period is proportional to ǫ1/2. Rigor-
ous analysis for the delay of pitchfork bifurcation in case
of additive noise, performed in [16], predicts the typical

delay path of the order of
√

ǫ| logD|.
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FIG. 11: (color online) Influence of noise on the increase of
the oscillation period. Langevin simulations with additive
Gaussian white noise of intensity D. Parameters: σ = 10,
R = 12. T1 is given by Eq.(18).

Notably, the validity of (23) requires that intensity of
additive or numerically caused noise is small compared to
ǫ (more precisely, the rate of noise-induced fluctuations
of coordinates should be smaller than the deterministic
velocity of slow drift). As soon as this condition becomes
violated, noise enables early departures from the slow
curve, and the scaling law breaks down. For this reason,
in the plots of Fig. 10c and Fig. 11 the left segments
of the respective lowest curves display visible deviations
from the general dependence.

As a result of bifurcation delay, the computed relax-
ation oscillations are not strictly periodic. Numerical
trajectories are discrete, and the “next to Xh” points on
subsequent turns of the orbit do not coincide. Hence, the
moment when the initial fluctuation is introduced varies
slightly, and the whole duration of the delay varies as well
within 1-2% of its mean value. Therefore, the segments
of flight between the branches of the slow curve fail to
repeat each other. This effect is visible e.g. in the double
spirals of Fig. 7, as well as in the slight scattering of nu-
merical values of periods in the bottom right panel of Fig.
10. Due to this effect, the numerically observed state is
only approximately periodic. However, one cannot speak
about chaos: long intervals of contraction near the stable
segments of the slow curve dominate in the computation
of averaged quantities, therefore all Lyapunov exponents
are negative.
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VI. COLLAPSE OF THE RELAXATION

OSCILLATIONS

With the further growth of R, the value of Xh moves
away from the minimum of the slow curve, and the seg-
ments of that curve which participate in the oscillatory
process become ever shorter. At the first sight, this pro-
cess might go on until Rh = σ(σ + 4)/(σ − 2) when the
value of Ψ corresponding to Xh and Xh1 vanishes, and
the “working interval” of the slow curve shrinks com-
pletely. In fact, the regime of relaxation oscillations
breaks down earlier. This owes to the subcritical char-
acter of the Hopf bifurcation which occurs at Xh in the
fast equations. The unstable periodic orbit, born in this
bifurcation, encircles the stable equilibrium on the slow
curve and restricts its local basin of attraction. This peri-
odic orbit of fast equations exists in an interval of values
of Ψ; on the opposite border of the interval, it disappears
in the homoclinic bifurcation of the saddle “equilibrium”
from the central part of the slow curve.

In an asymmetric variant of the Lorenz equations,
there is no “homoclinic explosion”[11] which would in-
stantaneously create in the phase state an infinite set of
unstable periodic orbits and aperiodic trajectories. In-
stead, this set is created by the sequence of secondary
homoclinic bifurcations. Here we do not aim at the com-
plete description of the bifurcation scenario; it suffices
to state that the newborn set is not attracting. How-
ever, as the slow variable Ψ moves in the direction of the
Hopf bifurcation, the chaotic state can get stabilized. As
a result, there exists a range of R values in which the
stable equilibria upon the slow curve are not the only
attractors of the fast system: they coexist with the at-
tracting chaotic set akin to the Lorenz attractor. The
stable manifold of the described unstable periodic orbit
separates the attraction basin of the equilibrium from
the attraction basin of the chaotic set. As long as the
trajectory of the fast system which leaves the slow curve
near Xh, jumps straight into the attraction basin of the
equilibrium at Xh1, dynamics remains similar to that of
Fig. 7. However, as soon as this jump ends up on the op-
posite side of the separatrix, the fast subsystem evolves
into the chaotic state and never reaches the slow curve
again. This event marks the end of the regime of relax-
ation oscillations.

Bifurcation delay plays a certain quantitative role in
this transition as well: it effectively enlarges the working
intervals of the slow curve, adding to them the nearby
parts of the unstable segments. Transition from relax-
ation oscillations to chaos is illustrated in Fig. 12. The
calculations were made at σ = 10 and ν = 0.1. Collapse
of relaxation oscillations was registered at R = 17.1354
(for comparison, Rh = 17.5 , whereas the chaotic set
in the phase space becomes attracting at R = 15.328).
Obviously, the geometry of attractors for R = 17.135
and R = 17.136 is qualitatively very much different.
This concerns not only the angular variable ϕ, but the
“Lorenz” variables X,Y and Z as well. In terms of those
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FIG. 12: (color online) Projections of phase portraits. σ = 10,
ν = 0.1. (a,b): R = 17.135; (c,d): R = 17.136. Dashed lines
on (a) and (c): dependence (9).
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FIG. 13: (color online) Temporal evolution of variables before
and after the breakup of relaxation oscillations. Parameter
values: σ = 10, ν = 0.1. (a) Dashed and solid lines: ϕ(t)
at R = 17.135 and R = 17.136, respectively. (b) Temporal
pattern of ϕ(t) at R = 17.136. (c,d): X(t) at R = 17.135 and
R = 17.136, respectively.

variables, before the transition the attractor consisted of
regular segments of spirals separated by quasistationary
translations. After the transition, spirals get replaced
by the pattern, typical for the Lorenz-like attractors. In
the course of chaotic motion, the fast variable X oscil-
lates erratically between positive and negative values, the
long-time average 〈X〉 stays relatively small and (on the
slow timescale) occasionally changes the sign. This, in
its turn, prohibits the large-scale variation of ϕ, so that
the chaotic attractor turns out to be strongly compressed
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along ϕ; the amplitude of torsional oscillations of the pen-
dulum falls severely.
Typical examples of temporal evolution of the angle

before and after the breakdown of relaxation oscillations
are presented in Fig. 13a,b. As seen in the upper panel,
after the transition the variation range of the angle ϕ
contracts by more than an order of magnitude. Fine
structure of the dependence ϕ(t) is shown in Fig. 13b
where the random-walk character of the behavior makes
a sharp contrast to the previously described long seg-
ments of monotonic evolution. For the Lorenz variables,
the transition is nonetheless drastic, but in a sort of dif-
ferent way. According to two lower panels of Fig. 13,
the amplitude of variation for those variables does not
change especially; what changes, is the character of the
dynamics: Long segments of quasistationary evolution
and short “spiralling” intervals disappear, yielding to ir-
regular rotations.
In the chaotic state, the variable Ψ is not slow any-

more; separation of timescales becomes invalid. Detailed
investigation of chaotic solutions for the Quincke pen-

dulum lies outside the scope of the current paper and
will be described elsewhere. Here we just mention one
of the noteworthy effects. In a certain region of param-
eter values, the chaotic attractor exhibits a symmetry-
breaking; two new attractors appear, for which either of
the torsional directions (clockwise or counterclockwise)
is preferred. From the point of view of nonlinear dynam-
ics this is a well-studied phenomenon; from the point of
view of an experimentalist, this would mean a surpris-
ing observation: the Quinke pendulum performs erratic
small-amplitude oscillations not around its mechanical
equilibrium, but around certain particular non-zero val-
ues of the torsional angle.
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